ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2024-04-25
    Description: 〈title xmlns:mml="http://www.w3.org/1998/Math/MathML"〉Abstract〈/title〉〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉There have been a number of theories proposed concerning the loss of relativistic electrons from the radiation belts. However, direct observations of loss were not possible on a number of previous missions due to the large field of view of the instruments and often high‐altitude orbits of satellites that did not allow researchers to isolate the precipitating electrons from the stably trapped. We use measurements from the ELFIN‐L suit of instruments flown on Lomonosov spacecraft at LEO orbit, which allows us to distinguish stably trapped from the drift loss cone electrons. The sun‐synchronous orbit of Lomonosov allows us to quantify scattering that occurred into the loss cone on the dawn‐side and the dusk‐side magnetosphere. The loss at MeV energies is observed predominantly on the dawn‐side, consistent with the loss induced by the chorus waves. The companion data publication provides processed measurements.〈/p〉
    Description: Plain Language Summary: There have been a number of models proposed concerning the loss of relativistic electrons from radiation belts. However, the direct observations of loss have been missing, as for most of the previous missions; the large aperture telescopes could not isolate the precipitating electrons from being stably trapped. In this study, we use measurements from ELFIN‐L on Lomonosov that allow for such separation and allow us to distinguish stably trapped from precipitating particles. We can also identify the particles that will be lost within one drift around the Earth, the so‐called drift loss cone. For understanding the loss processes and differentiating between them, it's crucially important to quantify where in local magnetic time these electrons will be scattered into the drift loss cone. Measurements from the ELFIN‐L instrument show that the loss at MeV energies is observed predominantly on the dawn side, consistent with the loss induced by the so‐called chorus plasma waves.〈/p〉
    Description: Key Points: 〈list list-type="bullet"〉 〈list-item〉 〈p xml:lang="en"〉ELFIN‐L measurements allow comparing scattering into the loss cone on the dawn and dusk side〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Processed Level‐3 measurements are provided in the data publication〈/p〉〈/list-item〉 〈list-item〉 〈p xml:lang="en"〉Most of the relativistic electrons are scattered into the drift loss cone on the dawn side〈/p〉〈/list-item〉 〈/list〉 〈/p〉
    Description: National Science Foundation
    Description: Russian University Satellite Mission
    Description: Helmholtz Association
    Description: European Union's Horizon 2020 Research and Innovation Program
    Description: https://doi.org/10.5880/GFZ.2.7.2023.002
    Description: https://doi.org/10.5880/GFZ.2.7.2023.003
    Description: https://doi.org/10.5880/GFZ.2.7.2023.004
    Description: https://doi.org/10.5880/GFZ.2.7.2023.005
    Description: https://doi.org/10.5880/GFZ.2.7.2023.006
    Description: https://doi.org/10.5880/GFZ.2.7.2023.007
    Description: https://www.ncei.noaa.gov/data/poes-metop-space-environment-monitor/access/l1b/v01r00/
    Keywords: ddc:538.7 ; Electron Particle Detector ; ELFIN-L ; radiation belts ; electron loss ; drift loss cone
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-04
    Description: Dawn's framing camera observed boulders on the surface of Vesta when the spacecraftwas in its lowest orbit (Low Altitude Mapping Orbit, LAMO). We identified, measured, and mapped boulders in LAMO images, which have a scale of 20 m per pixel. We estimate that our sample is virtually complete down to a boulder size of 4 pixels (80 m). The largest boulder is a 400 m‐sized block on the Marcia crater floor. Relatively few boulders reside in a large area of relatively low albedo, surmised to be the carbon‐rich ejecta of the Veneneia basin, either because boulders form less easily here or live shorter. By comparing the density of boulders around craters with a known age, we find that the maximum boulder lifetime is about 300 Ma. The boulder size‐frequency distribution (SFD) is generally assumed to follow a power law. We fit power laws to the Vesta SFD by means of the maximum likelihood method, but they do not fit well. Our analysis of power law exponents for boulders on other small Solar System bodies suggests that the derived exponent is primarily a function of boulder size range. The Weibull distribution mimics this behavior and fits the Vesta boulder SFD well. The Weibull distribution is often encountered in rock grinding experiments and may result from the fractal nature of cracks propagating in the rock interior. We propose that, in general, the SFD of particles (including boulders) on the surface of small bodies follows a Weibull distribution rather than a power law.
    Description: Key Points: We mapped boulders larger than 60 m on asteroid Vesta and found all associated with impact craters. The maximum lifetime of these large Vesta boulders is about 300 Ma, similar to that of meter‐sized lunar boulders. Their cumulative size‐frequency distribution is best fit by a Weibull distribution rather than a power law.
    Keywords: 523 ; Vesta ; Asteroid
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-06
    Description: The extremely massive (〉 90 Stellar Mass) and luminous (= 5 x 10(exp 6) Stellar Luminosity) star Eta Carinae, with its spectacular bipolar "Homunculus" nebula, comprises one of the most remarkable and intensely observed stellar systems in the Galaxy. However, many of its underlying physical parameters remain unknown. Multiwavelength variations observed to occur every 5.54 years are interpreted as being due to the collision of a massive wind from the primary star with the fast, less dense wind of a hot companion star in a highly elliptical (e approx. 0.9) orbit. Using three-dimensional (3-D) Smoothed Particle Hydrodynamics (SPH) simulations of the binary wind-wind collision, together with radiative transfer codes, we compute synthetic spectral images of [Fe III] emission line structures and compare them to existing Hubble Space Telescope/Space Telescope Imaging Spectrograph (HST/STIS) observations. We are thus able, for the first time, to tightly constrain the absolute orientation of the binary orbit on the sky. An orbit with an inclination of approx. 40deg, an argument of periapsis omega approx. 255deg, and a projected orbital axis with a position angle of approx. 312deg east of north provides the best fit to the observations, implying that the orbital axis is closely aligned in 3-D space with the Homunculus symmetry axis, and that the companion star orbits clockwise on the sky relative to the primary.
    Keywords: Astronomy
    Type: Bulletin de la Societe Royale des Sciences de Liege; Volume 80; 694-698
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-28
    Description: The interaction of the solar wind with umnagnetized objects possessing an ionosphere is reviewed. Venus, Mars, Titan, comets (including the artificial comet created by AMPTE) and the unusual interplanetary events interpreted as cometesimals are considered. The role of the interplanetary magnetic field and of mass loading in producing the observed interactions is highlighted. Interpretation to date is based largely on an MHD (fluid) treatment, but results from the first AMPTE barium release and from recordings made at Venus suggest that finite Larmor radius effects introduce asymmetries in the solar wind interaction.
    Keywords: SPACE SCIENCES (GENERAL)
    Type: CNES Proceedings of a Conference on the Comparative Study of Magnetospheric Systems; p 131-147
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The interaction of the solar wind with unmagnetized objects possessing an ionosphere is reviewed, with emphasis on recent developments. Venus, Mars, Titan, comets (including the artificial comet created by AMPTE) and the unusual interplanetary events interpreted as cometesimals are considered. The role of the interplanetary magnetic field and of mass loading in producing the observed interactions are highlighted. Interpretation to date is based largely on an MHD (fluid) treatment, but recent results from the first AMPTE barium release and from recordings made at Venus suggest that finite Larmor radius effects introduce asymmetries in the solar wind interaction.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: The focus of the present study is the compositional analysis of small-scale surface features within the Rheasil-Aa basin on asteroid Vesta. We are using data acquired by the Visible and InfraRed mapping Spectrometer (VIR) on the Dawn mission. Nominal spatial resolution of the data set considered in this study is 70m/px. The portion of Rheasil-Aa basin below 65degS has a howarditic composition, with the higher concentration of diogenitic versus eucritic material in the region between 45deg and 225degE-lon. However, there are several locations, such as craters Tarpeia and Severina and Parentatio Rupes, with lithologic characteristics different from the surroundings regions. Tarpeia crater has a eucritic patch in the west side of the crater, the bottom part ofthe wall and part of the floor. Severina, located in a region of Mg-rich pyroxene, has some diogenitic units on the walls of the crater. Also the Parentatio Rupes has an ob-AOUS diogenitic unit. These units extend for 10-20km, and their location, especially in the case of the two craters, suggests they formed before the cratering events and also before the Rheasil-Aa impact event. The origin of these units is still unclear; however, their characteristics and locations suggests heterogeneity in the composition of the ancient Vestan crust in this particular location of the surface.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-32077 , American Geophysical Union (AGU) Fall Meeting; Dec 15, 2014 - Dec 19, 2014; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: Following successful science operations at Vesta, the Dawn spacecraft is headed for an encounter with Ceres in 2015. What have we learned at Vesta? And, what do we expect to learn by comparing Vesta and Ceres? We will address these questions from the standpoint of geochemistry. Dawn's Gamma Ray and Neutron Detector (GRaND) is sensitive to the elemental composition of surface materials to depths of a few decimeters [1]. Gamma rays and neutrons, produced by the steady bombardment of galactic cosmic rays and by the decay of naturally ]occurring radioisotopes (K, Th, U), provide a chemical fingerprint of the regolith. Analysis of planetary radiation emissions enables mapping of specific elements (such as Fe, Mg, Si, Cl, and H) and compositional parameters (such as average atomic mass), which provide information about processes that shaped the planet1s surface and interior. Dawn has exceeded operational goals for GRaND at Vesta, accumulating an abundance of nadir-pointed data during five months in a 210 km, low altitude mapping orbit around Vesta (265-km mean radius). Chemical information from gamma ray and neutron measurements was used to test the connection between Vesta and the howardite, eucrite, and diogenite (HED) meteorites [2]. Additionally, GRaND searched for evolved, igneous lithologies [3], mantle and upper crustal materials exposed in large impact basins, mesosiderite compositions, and hydrogen in Vesta1s bulk regolith. Results of our analyses and their implications for thermal evolution and regolith-processes will be presented. The possibility of a subcrustal ocean [4, 5] and lack of cerean meteorites makes water-rich Ceres a compelling target of exploration [6]. If Ceres underwent aqueous differentiation, then crustal overturn or gas driven volcanism may have significantly modified its primitive surface; and products of aqueous alteration (e.g. [7]) would detectable by GRaND [1]. For example, the presence of Cl in salts, associated with liquid-water-processes, would have a profound effect on the thermal neutron leakage flux. GRaND is sensitive to H and H-layering, which may be in the form of endogenic water ice or hydrous minerals on Ceres. Ammonia ice (e.g., from recent cryovolcanism) would produce a distinctly different neutron signature than water ice [1]. Prospective results for GRaND at Ceres will be presented in the context of what we have learned about Vesta.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-27224 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-18
    Description: To showcase the on-going and wide-ranging scope of the Polar science discoveries, the Polar science team has created a one-stop shop for a thorough introduction to geospace physics, in the form of a DVD with supporting website. The DVD, Earth's Dynamic Space: Solar-Terrestrial Physics & NASA's Polar Mission, can be viewed as an end-to-end product or split into individual segments and tailored to lesson plans. Capitalizing on the Polar mission and its amazing science return, the Polar team created an exciting multi-use DVD intended for audiences ranging from a traditional classroom and after school clubs, to museums and science centers. The DVD tackles subjects such as the aurora, the magnetosphere and space weather, whilst highlighting the science discoveries of the Polar mission. This platform introduces the learner to key team members as well as the science principles. Dramatic visualizations are used to illustrate the complex principles that describe Earth's dynamic space. In order to produce such a wide-ranging product on a shoe-string budget, the team poured through existing NASA resources to package them into the Polar story. Team members also created visualizations using Polar data to complement the NASA stock footage. Scientists donated their time to create and review scripts to make this a real team effort, working closely with the award winning audio-visual group at JHU/Applied Physics Laboratory. The team was excited to be invited to join NASA's Sun-Earth Day 2005 E/PO program and the DVD will be distributed as part of the supporting educational packages.
    Keywords: Space Sciences (General)
    Type: Fall AGU 2004 Meeting; Dec 13, 2004 - Dec 17, 2004; San Francisco, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Oppia Quadrangle Av-10 (288-360 deg E, +/- 22 deg) is a junction of key geologic features that preserve a rough history of Asteroid (4) Vesta and serves as a case study of using geologic mapping to define a relative geologic timescale. Clear filter images, stereo-derived topography, slope maps, and multispectral color-ratio images from the Framing Camera on NASA's Dawn spacecraft served as basemaps to create a geologic map and investigate the spatial and temporal relationships of the local stratigraphy. Geologic mapping reveals the oldest map unit within Av-10 is the cratered highlands terrain which possibly represents original crustal material on Vesta that was then excavated by one or more impacts to form the basin Feralia Planitia. Saturnalia Fossae and Divalia Fossae ridge and trough terrains intersect the wall of Feralia Planitia indicating that this impact basin is older than both the Veneneia and Rheasilvia impact structures, representing Pre-Veneneian crustal material. Two of the youngest geologic features in Av-10 are Lepida (approximately 45 km diameter) and Oppia (approximately 40 km diameter) impact craters that formed on the northern and southern wall of Feralia Planitia and each cross-cuts a trough terrain. The ejecta blanket of Oppia is mapped as 'dark mantle' material because it appears dark orange in the Framing Camera 'Clementine-type' colorratio image and has a diffuse, gradational contact distributed to the south across the rim of Rheasilvia. Mapping of surface material that appears light orange in color in the Framing Camera 'Clementine-type' color-ratio image as 'light mantle material' supports previous interpretations of an impact ejecta origin. Some light mantle deposits are easily traced to nearby source craters, but other deposits may represent distal ejecta deposits (emplaced greater than 5 crater radii away) in a microgravity environment.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN19226 , Icarus (ISSN 0019-1035); 244; 104-119
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: The evolved, massive highly eccentric binary system, Car, underwent a periastron passage in the summer of 2014. We obtained two coordinated X-ray observations with XMM-Newton and NuSTAR during the elevated X-ray flux state and just before the X-ray minimum flux state around this passage. These NuSTAR observations clearly detected X-ray emission associated with eta Car extending up to approx. 50 keV for the first time. The NuSTAR spectrum above 10 keV can be fit with the bremsstrahlung tail from a kT approx. 6 keV plasma. This temperature is delta kT 2 keV higher than those measured from the iron K emission line complex, if the shocked gas is in collisional ionization equilibrium. This result may suggest that the companion star's pre-shock wind velocity is underestimated. The NuSTAR observation near the X-ray minimum state showed a gradual decline in the X-ray emission by 40% at energies above 5 keV in a day, the largest rate of change of the X-ray flux yet observed in individual eta Car observations. The column density to the hardest emission component, N(sub H) approx. 10(exp24) H cm(exp2), marked one of the highest values ever observed for eta Car, strongly suggesting the increased obscuration of the wind-wind colliding X-ray emission by the thick primary stellar wind prior to superior conjunction. Neither observation detected the power-law component in the extremely hard band that INTEGRAL and Suzaku observed prior to 2011. The power-law source might have faded before these observations.
    Keywords: Astronomy
    Type: GSFC-E-DAA-TN26982 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 817; 1; 23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...