ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
Collection
Publisher
Years
  • 1
    Publication Date: 2022-01-31
    Description: West Mata is a submarine volcano located in the SW Pacific Ocean between Fiji and Samoa in the NE Lau Basin. West Mata was discovered to be actively erupting at its summit in September 2008 and May 2009. Water-column chemistry and hydrophone data suggest it was probably continuously active until early 2011. Subsequent repeated bathymetric surveys of West Mata have shown that it changed to a style of frequent but intermittent eruptions away from the summit since then. We present new data from ship-based bathymetric surveys, high-resolution bathymetry from an autonomous underwater vehicle, and observations from remotely operated vehicle dives that document four additional eruptions between 2012 and 2018. Three of those eruptions occurred between September 2012 and March 2016; one near the summit on the upper ENE rift, a second on the NE flank away from any rift zone, and a third at the NE base of the volcano. The latter intruded a sill into a basin with thick sediments, uplifted them, and then extruded lava onto the seafloor around them. The most recent of the four eruptions occurred between March 2016 and November 2017 along the middle ENE rift zone and produced pillow lava flows with a shingled morphology and tephra as well as clastic debris that mantled the SE slope. ROV dive observations show that the shallower recent eruptions at West Mata include a substantial pyroclastic component, based on thick (〉1 m) tephra deposits near eruptive vents. The deepest eruption sites lack these near-vent tephra deposits, suggesting that pyroclastic activity is minimal below ∼2500 mbsl. The multibeam sonar re-surveys constrain the timing, thickness, area, morphology, and volume of the new eruptions. The cumulative erupted volume since 1996 suggests that eruptions at West Mata are volume-predictable with an average eruption rate of 7.8 × 106 m3/yr. This relatively low magma supply rate and the high frequency of eruptions (every 1–2 years) suggests that the magma reservoir at West Mata is relatively small. With its frequent activity, West Mata continues to be an ideal natural laboratory for the study of submarine volcanic eruptions.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-04-26
    Description: Subduction of oceanic crust and the formation of volcanic arcs above the subduction zone are important components in Earth’s geological and geochemical cycles. Subduction consumes and recycles material from the oceanic plates, releasing fluids and gases that enhance magmatic activity, feed hydrothermal systems, generate ore deposits and nurture chemosynthetic biological communities. Among the first lavas to erupt at the surface from a nascent subduction zone are a type classified as boninites. These lavas contain information about the early stages of subduction, yet because most subduction systems on Earth are old and well-established, boninite lavas have previously only been observed in the ancient geological record. Here we observe and sample an active boninite eruption occurring at 1,200 m depth at the West Mata submarine volcano in the northeast Lau Basin, southwest Pacific Ocean. We find that large volumes of H2O, CO2 and sulphur are emitted, which we suggest are derived from the subducting slab. These volatiles drive explosive eruptions that fragment rocks and generate abundant incandescent magma-skinned bubbles and pillow lavas. The eruption has been ongoing for at least 2.5 years and we conclude that this boninite eruption is a multi-year, low-mass-transfer-rate eruption. Thus the Lau Basin may provide an important site for the long-term study of submarine volcanic eruptions related to the early stages of subduction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2024-02-07
    Description: Highlights • Decoupling of volatile element enrichment and magmatic volatile influx. • Multiple sulfide generations with distinct trace element signatures. • Boiling-induced pyrite precipitation revealed by textures and Tl/Pb, Sb/Pb and Bi/Pb ratios. • Boiling-induced Au, electrum and Bi-telluride colloids lead to high Au grades. • Metals sources: shallow upflow- (60–80%) and deep reaction (20–40%) zone. Abstract Shallow (〈1500 mbsl) submarine arc-related hydrothermal systems can host base (Cu), precious (Au) and volatile elements (As, Se, Sb, Te, Tl) in significant quantities. Their wide application in the high-tech industry, but a potential eco-toxicological footprint gives them a strategic importance. However, the processes that concentrate these elements in submarine arc-related hydrothermal systems, compared to their mid-ocean ridge counterparts are still debated, and it is unclear whether boiling-related processes and/or the contribution of magmatic volatiles are key for their enrichment. We present bulk sulfide-sulfate, isotope (S and Pb), and high-resolution microanalytical data of hydrothermal sulfides from the Niua South fore-arc volcano in north Tonga, where numerous black-smoker type sulfide-sulfate chimneys emit boiling fluids with temperatures (up to 325 °C) near the seawater boiling curve at ~1170 m water depth. Hence, this system represents an ideal natural laboratory to investigate the effect of fluid boiling on base, precious, and volatile element enrichment associated with hydrothermal seafloor mineralization. At Niua South, textural and chemical variations of multiple pyrite (framboidal, euhedral and massive), chalcopyrite (linings), and sphalerite (dendrites and linings) generations are indicative for sulfide precipitation from early low-temperature (~240 °C) fluids that underwent abundant mixing with ambient seawater (low Se/Tl and Co/Ni ratios in pyrite) and from later high-temperature (up to 325 °C) (high Se/Tl and Co/Ni ratios in pyrite). In addition, crustiform inclusion-rich pyrite that precipitated from high-temperature boiling fluids shows low Bi/Pb, Tl/Pb and Sb/Pb ratios due to volatile element loss (e.g., Tl and Sb) to the vapor phase compared to pyrite that formed during the low temperature stage. By contrast, late sphalerite (~280 °C) is enriched in elements with an affinity to Cl-complexes like Mn, Co, Ni, Ga, Cd, In, and Sn, and therefore precipitated from the corresponding Cl-rich liquid phase. Gold occurs in solid-solution and as boiling-induced particles of native Au, electrum, and Au-rich Bi-tellurides in pyrite (up to 144 ppm Au), sphalerite (up to 60 ppm Au), and chalcopyrite (up to 37 ppm Au). These particles (〈5–10 µm) probably formed during fluid boiling causing an extreme Au enrichment (〉30 ppm) in the mature and late stage of chimney formation. Lead isotope data indicate that the hydrothermal fluids scavenged metals not only from the deeper basement in the reaction zone (20–40%), but also from young dacitic volcanic rocks near the seafloor in the upflow zone (60–80%). Sulfur isotope (δ34S = −0.3 to 4.4‰) and Se/S*106 values (〈1500) of hydrothermal sulfides provide no evidence for a magmatic volatile influx and indicate that S, and most metals and semi-metals were likely leached from the host rocks. Hence, volatile (As, Se, Sb, Te, Tl), and precious (Au) element enrichments in arc-related submarine hydrothermal systems can be decoupled from magmatic volatiles and are instead a result of boiling-induced trace element fractionation – a hydrothermal enrichment process, which has been underestimated to date.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...