ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-19
    Description: Agricultural productivity is expected to be sensitive to global climate change. Models from atmospheric science, plant science, and agricultural economics are linked to explore this sensitivity. Although the results depend on the severity of climate change and the compensating effects of carbon dioxide on crop yields, the simulation suggests that irrigated acreage will expand and regional patterns of U.S. agriculture will shift. The impact of the U.S. economy strongly depends on which climate model is used.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Nature (ISSN 0028-0836); 345; 219-224
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: One input to the ground hydrology component of general circulation models is the fraction of gridbox covered (i.e., shaded) by vegetation. The FV is needed in order to specify the partitioning of evaporation between vegetated and nonvegetated surfaces. Satellite data could provide global and seasonally varying specification of FV. In this work, FV is derived from Landsat data for a site in western Kenya; the accuracy of the estimate is evaluated and then compared to the accuracy requirements of a ground hydrology model. Results show that the accuracy of Landsat estimation of FV is + or - 5 percent and that transpiration, evaporation from bare soil and the seasonality of evapotranspiration are strongly dependent on FV.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: Advances in Space Research (ISSN 0273-1177); 7; 11, 1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A standardized global data set of soil horizon thicknesses and textures (particle size distributions) was compiled. This data set will be used by the improved ground hydrology parameterization designed for the Goddard Institute for Space Studies General Circulation Model (GISS GCM) Model 3. The data set specifies the top and bottom depths and the percent abundance of sand, silt, and clay of individual soil horizons in each of the 106 soil types cataloged for nine continental divisions. When combined with the World Soil Data File, the result is a global data set of variations in physical properties throughout the soil profile. These properties are important in the determination of water storage in individual soil horizons and exchange of water with the lower atmosphere. The incorporation of this data set into the GISS GCM should improve model performance by including more realistic variability in land-surface properties.
    Keywords: EARTH RESOURCES AND REMOTE SENSING
    Type: NASA-TM-4286 , REPT-91B00202 , NAS 1.15:4286
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-03
    Description: The Agricultural Model Intercomparison and Improvement Project (AgMIP) has developed novel methods for Coordinated Global and Regional Assessments (CGRA) of agriculture and food security in a changing world. The present study aims to perform a proof of concept of the CGRA to demonstrate advantages and challenges of the proposed framework. This effort responds to the request by the UN Framework Convention on Climate Change (UNFCCC) for the implications of limiting global temperature increases to 1.5C and 2.0C above pre-industrial conditions. The protocols for the 1.5C/2.0C assessment establish explicit and testable linkages across disciplines and scales, connecting outputs and inputs from the Shared Socio-economic Pathways (SSPs), Representative Agricultural Pathways (RAPs), Half a degree Additional warming, Prognosis and Projected Impacts (HAPPI) and Coupled Model Intercomparison Project Phase 5 (CMIP5) ensemble scenarios, global gridded crop models, global agricultural economics models, site-based crop models and within-country regional economics models. The CGRA consistently links disciplines, models and scales in order to track the complex chain of climate impacts and identify key vulnerabilities, feedbacks and uncertainties in managing future risk. CGRA proof-of-concept results show that, at the global scale, there are mixed areas of positive and negative simulated wheat and maize yield changes, with declines in some bread basket regions, at both 1.5C and 2.0C. Declines are especially evident in simulations that do not take into account direct CO2 effects on crops. These projected global yield changes mostly resulted in increases in prices and areas of wheat and maize in two global economics models. Regional simulations for 1.5C and 2.0C using site-based crop models had mixed results depending on the region and the crop. In conjunction with price changes from the global economics models, productivity declines in the Punjab, Pakistan, resulted in an increase in vulnerable households and the poverty rate. This article is part of the theme issue The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5C above pre-industrial levels.
    Keywords: Geosciences (General)
    Type: GSFC-E-DAA-TN63705 , Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences (ISSN 1364-503X ) (e-ISSN 1471-2962); 376; 2119
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-06-06
    Description: We present indigenous knowledge narratives and explore their connections to documented temperature and other climate changes and observed climate change impact studies. We then propose a framework for enhancing integration of these indigenous narratives of observed climate change with global assessments. Our aim is to contribute to the thoughtful and respectful integration of indigenous knowledge with scientific data and analysis, so that this rich body of knowledge can inform science, and so that indigenous and traditional peoples can use the tools and methods of science for the benefit of their communities if they choose to do so. Enhancing ways of understanding such connections are critical as the Intergovernmental Panel on Climate Change Fifth Assessment process gets underway.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-06-06
    Description: While current rates of sea level rise and associated coastal flooding in the New York City region appear to be manageable by stakeholders responsible for communications, energy, transportation, and water infrastructure, projections for sea level rise and associated flooding in the future, especially those associated with rapid icemelt of the Greenland and West Antarctic Icesheets, may be beyond the range of current capacity because an extreme event might cause flooding and inundation beyond the planning and preparedness regimes. This paper describes the comprehensive process, approach, and tools developed by the New York City Panel on Climate Change (NPCC) in conjunction with the region s stakeholders who manage its critical infrastructure, much of which lies near the coast. It presents the adaptation approach and the sea-level rise and storm projections related to coastal risks developed through the stakeholder process. Climate change adaptation planning in New York City is characterized by a multi-jurisdictional stakeholder-scientist process, state-of-the-art scientific projections and mapping, and development of adaptation strategies based on a risk-management approach.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-29
    Description: Agricultural systems are currently undergoing rapid shifts owing to socioeconomic development, technological change, population growth, economic opportunity, evolving demand for commodities, and the need for sustainability amid global environmental change. It is not sufficient to maintain current harvest levels; rather, there is a need to rapidly increase production in light of a population growing to nearly 10 billion by mid-century and to more than 11 billion by 2100 (FAO, 2016; UN, 2016; Popkin et al., 2012). Current and future agricultural systems are additionally burdened by human-caused climate change, the result of accumulating greenhouse gas and aerosol emissions, ecological destruction, and land use changes that have altered the chemical composition of Earths atmosphere and trapped energy in the Earth system (IPCC, 2013; Porter et al., 2014). This increased energy has already raised average surface temperatures by approximately 1 degree Centigrade (GISTEMP Team, 2017; Hansen et al., 2010), leading early on to the term global warming, but this phenomenon is now more accurately referred to as climate change because it also modifies atmospheric circulation, adjusts regional and seasonal precipitation patterns, and shifts the distribution and characteristics of extreme events (Bindoff et al., 2013; Collins et al., 2013). Food and health systems face increasing risk owing to progressive climate change now manifesting itself as more frequent, severe extreme weather eventsheat waves, droughts, and floods (IPCC, 2013). Often without warning, weather-related shocks can have catastrophic and reverberating impacts on the increasingly exposed global food systemthrough production, processing, distribution, retail, disposal, and waste. Simultaneously, malnutrition and ill health are arising from lack of access to nutritious food, exacerbated in crises such as food price spikes or shortages. For some countries, particularly import-dependent low-income countries, weather shocks and price spikes can lead to social unrest, famine, and migration.
    Keywords: Earth Resources and Remote Sensing; Meteorology and Climatology
    Type: GSFC-E-DAA-TN57244
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-19
    Description: The potential effects of climate change on the food production system are raising concern both globally and regionally. The system is already challenged to deliver sufficient and healthy sustenance to all people, and is certain to be even further challenged as world population grows and price shocks loom. The prospect of climate change intensifies these challenges, raising the risk that more frequent and intense extreme weather events threaten the stability of agricultural production in regions around the globe. This two-part set is an important contribution to the ongoing Imperial College Press (ICP) Series on Climate Change Impacts, Adaptation, and Mitigation. This series aims to provide the know ledge base necessary for understanding and responding to climate change, in both its current form and future manifestations. In these volumes, leading agricultural researchers have come together to contribute their expertise on actual and potential climate change impacts, adaptation strategies, and mitigation efforts. This ongoing series is jointly published by The American Society of Agronomy (ASA), Crop Science Society of America (CSSA), and Soil Science Society of America (SSSA), together with ICP. We hope that this fruitful cooperation will continue for many years to come, as it spurs the global effort to define and meet the great food security and climate change challenges of our time.
    Keywords: Life Sciences (General); Meteorology and Climatology
    Type: GSFC-E-DAA-TN30769 , Handbook of Climate Change and Agroecosystems; xi
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Diverse vulnerabilities of Bangladesh's agricultural sector in 16 sub-regions are assessed using experiments designed to investigate climate impact factors in isolation and in combination. Climate information from a suite of global climate models (GCMs) is used to drive models assessing the agricultural impact of changes in temperature, precipitation, carbon dioxide concentrations, river floods, and sea level rise for the 2040-2069 period in comparison to a historical baseline. Using the multi-factor impacts analysis framework developed in Yu et al. (2010), this study provides new sub-regional vulnerability analyses and quantifies key uncertainties in climate and production. Rice (aman, boro, and aus seasons) and wheat production are simulated in each sub-region using the biophysical Crop Environment REsource Synthesis (CERES) models. These simulations are then combined with the MIKE BASIN hydrologic model for river floods in the Ganges-Brahmaputra-Meghna (GBM) Basins, and the MIKE21Two-Dimensional Estuary Model to determine coastal inundation under conditions of higher mean sea level. The impacts of each factor depend on GCM configurations, emissions pathways, sub-regions, and particular seasons and crops. Temperature increases generally reduce production across all scenarios. Precipitation changes can have either a positive or a negative impact, with a high degree of uncertainty across GCMs. Carbon dioxide impacts on crop production are positive and depend on the emissions pathway. Increasing river flood areas reduce production in affected sub-regions. Precipitation uncertainties from different GCMs and emissions scenarios are reduced when integrated across the large GBM Basins' hydrology. Agriculture in Southern Bangladesh is severely affected by sea level rise even when cyclonic surges are not fully considered, with impacts increasing under the higher emissions scenario.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN8883 , Global Environmental Change; 23; 1; 338-350
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Potential consequences of climate change on crop production can be studied using mechanistic crop simulation models. While a broad variety of maize simulation models exist, it is not known whether different models diverge on grain yield responses to changes in climatic factors, or whether they agree in their general trends related to phenology, growth, and yield. With the goal of analyzing the sensitivity of simulated yields to changes in temperature and atmospheric carbon dioxide concentrations [CO2], we present the largest maize crop model intercomparison to date, including 23 different models. These models were evaluated for four locations representing a wide range of maize production conditions in the world: Lusignan (France), Ames (USA), Rio Verde (Brazil) and Morogoro (Tanzania). While individual models differed considerably in absolute yield simulation at the four sites, an ensemble of a minimum number of models was able to simulate absolute yields accurately at the four sites even with low data for calibration, thus suggesting that using an ensemble of models has merit. Temperature increase had strong negative influence on modeled yield response of roughly -0.5 Mg ha(sup 1) per degC. Doubling [CO2] from 360 to 720 lmol mol 1 increased grain yield by 7.5% on average across models and the sites. That would therefore make temperature the main factor altering maize yields at the end of this century. Furthermore, there was a large uncertainty in the yield response to [CO2] among models. Model responses to temperature and [CO2] did not differ whether models were simulated with low calibration information or, simulated with high level of calibration information.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN14222 , Global Change Biology; 20; 7; 2301-2320
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...