ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-12-03
    Description: The simulation of sound generation and propagation in three space dimensions with realistic aircraft components is a very large time dependent computation with fine details. Simulations in open domains with embedded objects require accurate and robust algorithms for propagation, for artificial inflow and outflow boundaries, and for the definition of geometrically complex objects. The development, implementation, and validation of methods for solving these demanding problems is being done to support the NASA pillar goals for reducing aircraft noise levels. Our goal is to provide algorithms which are sufficiently accurate and efficient to produce usable results rapidly enough to allow design engineers to study the effects on sound levels of design changes in propulsion systems, and in the integration of propulsion systems with airframes. There is a lack of design tools for these purposes at this time. Our technical approach to this problem combines the development of new, algorithms with the use of Mathematica and Unix utilities to automate the algorithm development, code implementation, and validation. We use explicit methods to ensure effective implementation by domain decomposition for SPMD parallel computing. There are several orders of magnitude difference in the computational efficiencies of the algorithms which we have considered. We currently have new artificial inflow and outflow boundary conditions that are stable, accurate, and unobtrusive, with implementations that match the accuracy and efficiency of the propagation methods. The artificial numerical boundary treatments have been proven to have solutions which converge to the full open domain problems, so that the error from the boundary treatments can be driven as low as is required. The purpose of this paper is to briefly present a method for developing highly accurate algorithms for computational aeroacoustics, the use of computer automation in this process, and a brief survey of the algorithms that have resulted from this work. A review of computational aeroacoustics has recently been given by Lele.
    Keywords: Acoustics
    Type: HPCCP/CAS Workshop Proceedings 1998; 9-14; NASA/CP-1999-208757
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The effects of magnetic storm phases on F-layer irregularities from auroral to equatorial latitudes in a nearly constant western longitude zone are presented by considering scintillation, spread F, and low-energy (less than 12 eV) electron precipitation data for eight magnetic storms that occurred during the high solar flux period September-November 1981. In the equatorial region, F-layer irregularities can be inhibited during the main phase. In the high latitude region, F-layer irregularities are found to be generated at the auroral latitudes during the main phase. During the recovery phase, when there are conditions of low magnetic activity, low auroral irregularities, and low-energy electron precipitation crossing the subauroral regions, strong F-layer irregularities are found to be generated in the subauroral regions.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 12; 6, 19; 223-226
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Data from the Advanced Ionospheric Sounder (AIS) deployed at Halley, Antarctica (76-deg S, 27-deg W; L = 4.2) and the Dynamics Explorer-2 spacecraft (DE-2) are used to investigate several aspects of the formation processes and dynamics of the poleward edge of the midlatitude electron density trough. These include a study of the flux and energy of charged particles precipitating into the F-region as a function of Magnetic Local Time. It is found that local energetic electron precipitation is a major source of ionization of the poleward edge in the evening sector, but only after magnetic midnight transport processes become more important. Occasionally a significant increase in the flux of conjugate photoelectrons is colocated with the poleward edge of the trough in the morning sector. The combination of AIS and DE-2 data has allowed identification of significant longitudinal structure on the poleward edge of the trough that may be the result of substorm activity. It is found that the orientation of the poleward edge of the trough and the locus of the plasmapause predicted from the 'tear-drop' model vary in rather a similar manner with local time, though no close physical link between the two features is inferred from this coincidence.
    Keywords: GEOPHYSICS
    Type: Journal of Atmospheric and Terrestrial Physics (ISSN 0021-9169); 48; 715-728
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-11
    Description: Penetration rates of thin aluminum foil sensors of Ariel II satellites compared with flux measured by microphone detectors in vicinity of earth
    Keywords: STRUCTURAL MECHANICS
    Type: ROYAL SOCIETY /LONDON/, PROCEEDINGS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: The X-ray Timing Explorer (XTE) spacecraft is a NASA science low-earth orbit explorer-class satellite to be launched in 1995, and is an in-house Goddard Space Flight Center (GSFC) project. It has two deployable aluminum honeycomb solar array wings with each wing being articulated by a single axis solar array drive assembly. This paper will address the design, the qualification testing, and the development problems as they surfaced of the Solar Array Deployment and Drive System.
    Keywords: MECHANICAL ENGINEERING
    Type: NASA. Johnson Space Center, The 29th Aerospace Mechanisms Symposium; p 268-282
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Large area focal plane arrays of unprecedented performance were developed for use in Near Infrared Camera and Multi-Object Spectrometer (NICMOS), a proposed Hubble Space Telescope refurbishment instrument. These FPAs are 128x128-element, HgCdTe hybrid arrays with a cutoff wavelength of 2.5 microns. The multiplexer consists of a CMOS field effect transistor switch array with a typical mean readout noise of less than 30 electrons. The detectors typically have a mean dark current of less than 10 electrons/s at 77 K, with currents below 2 electrons measured at 60 K (both at 0.5 V reverse bias). The mean quantum efficiency is 40 to 60 percent at 77 K for 1.0 to 2.4 microns. Functional pixel yield is typically greater than 99 percent, and the power consumption is approximately 0.2 mW (during readout only).
    Keywords: ASTRONOMY
    Type: NASA, Ames Research Center, Proceedings of the Third Infrared Detector Technology Workshop; p 311-320
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-06
    Description: Creare Incorporated and NASA Goddard Space Flight Center developed and space qualified two wide range pumps (WRPs) that were included in the Sample Analysis at Mars (SAM) instrument. This instrument was subsequently integrated into the Mars Science Laboratory (MSL) "Curiosity Rover," launched aboard an Atlas V rocket in 2011, and landed on August 6, 2012, in the Gale Crater on Mars. The pumps have now operated for more than 18 months in the Gale Crater and have been evacuating the key components of the SAM instrument: a quadrupole mass spectrometer, a tunable laser spectrometer, and six gas chromatograph columns. In this paper, we describe the main design challenges and the ways in which they were solved. This includes the custom design of a miniaturized, high-speed motor to drive the turbo drag pump rotor, analysis of rotor dynamics for super critical operation, and bearing/lubricant design/selection.
    Keywords: Ground Support Systems and Facilities (Space); Mechanical Engineering; Lunar and Planetary Science and Exploration
    Type: The 42nd Aerospace Mechanism Symposium; 463-470; NASA/CP-2014-217519
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.
    Keywords: Spacecraft Design, Testing and Performance
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 463-471; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: We have designed and built an instrument to measure and monitor the "nightglow" of the Earth's atmosphere in the near ultraviolet (NUV). In this paper we describe the design of this instrument, called NIGHTGLOW. NIGHTGLOW is designed to be flown-from a high altitude research balloon, and circumnavigate the globe. NIGHTGLOW is a NASA, University of Utah, and New Mexico State University project. A test flight took place from Palestine, Texas on July 5, 2000, lasting about 8 hours. The instrument performed well and landed safely in Stiles, Texas with little damage. The resulting measurements of the NUV nightglow are consistent with previous measurements from sounding rockets and balloons. The results will be presented and discussed.
    Keywords: Aerodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2018-06-06
    Description: Black carbon (BC) in ultrafiltered high-molecular-weight DOM (UDOM) was measured in surface waters of Delaware Bay, Chesapeake Bay and the adjacent Atlantic Ocean (USA) to ascertain the importance of riverine and estuarine DOM as a source of BC to the ocean. BC comprised 5-72% of UDOM-C (27+/-l7%) and on average 8.9+/-6.5% of dissolved organic carbon (DOC) with higher values in the turbid region of the Delaware Estuary and lower yields in the river and coastal ocean. The spatial and seasonal distributions of BC along the salinity gradient of Delaware Bay suggest that the higher levels of BC in surface water UDOM originated from localized sources, possibly from atmospheric deposition or released from resuspended sediments. Black carbon comprised 4 to 7% of the DOC in the coastal Atlantic Ocean, revealing that river-estuary systems are important exporters of colloidal BC to the ocean. The annual flux of BC from Delaware Bay UDOM to the Atlantic Ocean was estimated at 2.4x10(exp 10) g BC yr(exp -1). The global river flux of BC through DOM to the ocean could be on the order of 5.5x1O(exp 12)g BC yr (exp -1). These results support the hypothesis that the DOC pool is the intermediate reservoir in which BC ages prior to sedimentary deposition.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...