ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-04-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-04-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-04-04
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-07-18
    Description: We investigated genetic differentiation among populations of the clonal grass Elymus athericus, a common salt-marsh species occurring along the Wadden Sea coast of Europe. While E. athericus traditionally occurs in the high salt marsh, it recently also invaded lower parts of the marsh. In one of the first analyses of the genetic population structure in salt-marsh species, we were interested in population differentiation through isolation-by-distance, and among strongly divergent habitats (low and high marsh) in this wind- and water-dispersed species. High and low marsh habitats were sampled at six sites throughout the Wadden Sea. Based on reciprocal transplantation experiments conducted earlier revealing lower survival of foreign genotypes we predicted reduced gene flow among habitats. Accordingly, an analysis with polymorphic cross-species microsatellite primers revealed significant genetic differentiation between high and low marsh habitats already on a very small scale (〈 100 m), while isolation-by-distance was present only on larger scales (60–443 km). In an analysis of molecular variance we found that 14% of the genetic variance could be explained by the differentiation between habitats, as compared to only 8.9% to geographical (isolation-by-distance) effects among six sites 2.5–443 km distant from each other. This suggests that markedly different selection regimes between these habitats, in particular intraspecific competition and herbivory, result in habitat adaptation and restricted gene flow over distances as small as 80 m. Hence, the genetic population structure of plant species can only be understood when considering geographical and selection-mediated restrictions to gene flow simultaneously.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  [Poster] In: Kick-off meeting CRC 1182: Origin and Function of Metaorganisms, 08.-10.06.2016, Kiel, Germany .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    In:  Science, 301 (5638). p. 1343.
    Publication Date: 2017-03-31
    Description: In vertebrates, genes of the major histocompatibility complex (MHC), with their pronounced polymorphism, potentially represent outstanding examples for the selective advantages of genetic diversity (1). Theoretical models predicted that, within an individual, MHC alleles can be subjected to two opposing selective forces, resulting in an optimal number of genes at intermediate individual MHC diversity (2, 3). Diversifying selection increases heterozygosity and enables wider recognition of pathogens (4). This process is opposed by the need to delete T cells that react with self peptide–MHC combinations (5) from the repertoire, which has been proposed as a possible mechanism constraining expansion of MHC genes. Because too high MHC diversity might delimit T cell diversity, it might also impose limitations on the efficiency of pathogen recognition. However, empirical evidence demonstrating fitness benefits in terms of parasite resistance caused by this type of optimal MHC diversity has been lacking. Therefore, we tested whether three-spined sticklebacks (Gasterosteus aculeatus L.) carrying an intermediate level of individual MHC diversity also displayed the strongest level of resistance against parasite infection. Sticklebacks are particularly suited to test MHC optimality, because MHC class II genotypes can differ markedly in the number of MHC class IIB alleles (6). We caught fish from an outbred population and used these to breed six sibships of immunologically naïve fish (i.e., they had no previous contact to parasites). Immunogenetic diversity ranged from three to nine MHC class IIB alleles found in reverse-transcribed messenger RNA (mRNA) [see (6) for details on genotyping]. The MHC genotypes within these sibships segregated above and below the hypothesized optimal number of ∼5 MHC class IIB alleles, which had previously been estimated in an epidemiological field survey (7). In individual infection treatments, fish from all sibships were simultaneously exposed to three of the most abundant parasite species identified in the field (Fig. 1A) (8). After two rounds of infection, separated by an interval of 8 weeks, we found a significant minimal mean infection rate at an intermediate number of individual MHC class IIB variants [i.e., 5.82 expressed alleles (Fig. 1B)]. This result was also confirmed when sibships were considered separately [i.e., 4.96 alleles (Fig. 1C)] (9). The strong pattern only appeared when infection with all three parasites was accounted for simultaneously. This may not be surprising, because single alleles are expected to correlate with single diseases and multiple alleles can contribute to resistance against several infectious agents (2).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: Ohne das Meer gäbe es kein Leben auf unserem Planeten. Es regelt weitgehend das Klima, gibt uns Nahrung und liefert Energie. Darüber hinaus ist es ein wichtiger Verkehrsweg, ein Erholungsraum und ein Quell ästhetischen Vergnügens. Aber das Meer steht unter Stress, denn das alte Prinzip von der „Freiheit der Meere“ hat zu Überfischung, Artenverlust und einer immensen Verschmutzung der Ozeane geführt. Deshalb muss der Umgang mit dem Meer auf nachhaltige und gerechte Grundlagen gestellt werden. Der Meeresatlas 2017 liefert dazu die Daten, Fakten und Zusammenhänge. Er zeigt in zahlreichen Beiträgen und über 50 Grafiken, in welch schlechtem Zustand sich die Weltmeere befinden, warum das so ist und was man tun muss, um die Situation der Ozeane zu verbessern.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-03-19
    Description: Ocean acidification (OA), the dissolution of excess anthropogenic carbon dioxide in ocean waters, is a potential stressor to many marine fish species. Whether species have the potential to acclimate and adapt to changes in the seawater carbonate chemistry is still largely unanswered. Simulation experiments across several generations are challenging for large commercially exploited species because of their long generation times. For Atlantic cod (Gadus morhua), we present first data on the effects of parental acclimation to elevated aquatic CO2 on larval survival, a fundamental parameter determining population recruitment. The parental generation in this study was exposed to either ambient or elevated aquatic CO2 levels simulating end-of-century OA levels (~1100 µatm CO2) for six weeks prior to spawning. Upon fully reciprocal exposure of the F1 generation, we quantified larval survival, combined with two larval feeding regimes in order to investigate the potential effect of energy limitation. We found a significant reduction in larval survival at elevated CO2 that was partly compensated by parental acclimation to the same CO2 exposure. Such compensation was only observed in the treatment with high food availability. This complex 3-way interaction indicates that surplus metabolic resources need to be available to allow a transgenerational alleviation response to ocean acidification.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    GEOMAR Helmholtz-Zentrum für Ozeanforschung
    In:  GEOMAR Helmholtz-Zentrum für Ozeanforschung, Kiel, Germany, 6 pp.
    Publication Date: 2019-09-24
    Description: Der Dorschbestand in der westlichen Ostsee befindet sich seit Jahren außerhalb sicherer biologischer Grenzen. Diese Situation hat sich jetzt weiter verschlechtert, so dass im Jahr 2016 die Anzahl der einjährigen Jungdorsche nur 3.5% des durchschnittlichen Nachwuchses betrug. Der Internationale Rat für Meeresforschung (ICES) hat deshalb eine drastische Reduzierung der kommerziellen Fänge im Jahr 2017 angeraten. Leider ist die Politik dieser Empfehlung nicht gefolgt und es sind etwa doppelt so hohe Fänge erlaubt worden. In Deutschland beschlossene finanzielle Hilfsmittel für die Fischer tragen ebenfalls nicht zur Verringerung dieser Fänge bei. Die wenigen einjährigen Dorsche von 2016 werden daher in 2017 stark befischt, bevor sie im Jahr 2018 den Elternbestand stellen. Es ist zu befürchten, dass der Nachwuchs von diesem viel zu kleinen Elternbestand ganz ausbleibt und der westliche Dorschbestand im Jahr 2019 zusammenbricht, mit den entsprechenden drastischen Folgen für Berufs- und Angelfischerei. Um den Fortbestand des westlichen Dorsches zu sichern, schlagen wir vor, die Fischerei und Angelei auf Dorsch in der westlichen Ostsee für zwei Jahre einzustellen, mit Ausgleichszahlungen für Berufsfischer und Angelkutter.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Eukaryotic phytoplankton exhibit an enormous species richness, displaying a range of phylogenetic, morphological and physiological diversity. Yet, until recently, very little was known about the diversity, genetic variation and evolutionary processes within species and populations. An approach to explore this diversity and to understand evolution of phytoplankton is to use population genetics as a conceptual framework and methodology. Here, we discuss the patterns, processes and questions that population genetic studies have revealed in eukaryotic phytoplankton. First, we describe the main biological processes generating genetic variation. We specifically discuss the importance of life-cycle complexity for genetic and phenotypic diversity and consider how such diversity can be maintained during blooms when rapid asexual proliferation dominates. Next, we explore how genetic diversity is partitioned over time and space, with a focus on the processes shaping this structure, in particular selection and genetic exchange. Our aim is also to show how population genetics can be used to make inferences about realized dispersal and sexual recombination, as these processes are so difficult to study directly. Finally, we highlight important open questions and suggest promising avenues for future studies that will be made possible by new sequencing technologies
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...