ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2023-06-05
    Description: Water levels in inland seas and lakes globally will drop, often dramatically, over the 21st century in response to climate change. Based on the case of the Caspian Sea, we argue for a concerted campaign to raise awareness of threats to people, biodiversity and geopolitical stability.
    Description: EU Horizon 2020 Grant Ref Number 642973
    Keywords: ddc:551.48 ; Climate-change impacts ; Ecosystem services ; Environmental impact ; Hydrology
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-02-23
    Description: The early last glacial termination was characterized by intense North Atlantic cooling and weak overturning circulation. This interval between ~18,000 and 14,600 years ago, known as Heinrich Stadial 1, was accompanied by a disruption of global climate and has been suggested as a key factor for the termination. However, the response of interannual climate variability in the tropical Pacific (El Niño-Southern Oscillation) to Heinrich Stadial 1 is poorly understood. Here we use Sr/Ca in a fossil Tahiti coral to reconstruct tropical South Pacific sea surface temperature around 15,000 years ago at monthly resolution. Unlike today, interannual South Pacific sea surface temperature variability at typical El Niño-Southern Oscillation periods was pronounced at Tahiti. Our results indicate that the El Niño-Southern Oscillation was active during Heinrich Stadial 1, consistent with climate model simulations of enhanced El Niño-Southern Oscillation variability at that time. Furthermore, a greater El Niño-Southern Oscillation influence in the South Pacific during Heinrich Stadial 1 is suggested, resulting from a southward expansion or shift of El Niño-Southern Oscillation sea surface temperature anomalies.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: The early Pliocene warm phase was characterized by high sea surface temperatures and a deep thermocline in the eastern equatorial Pacific. A new hypothesis suggests that the progressive closure of the Panamanian seaway contributed substantially to the termination of this zonally symmetric state in the equatorial Pacific. According to this hypothesis, intensification of the Atlantic meridional overturning circulation (AMOC) – induced by the closure of the gateway – was the principal cause of equatorial Pacific thermocline shoaling during the Pliocene. In this study, twelve Panama seaway sensitivity experiments from eight ocean/climate models of different complexity are analyzed to examine the effect of an open gateway on AMOC strength and thermocline depth. All models show an eastward Panamanian net throughflow, leading to a reduction in AMOC strength compared to the corresponding closed-Panama case. In those models that do not include a dynamic atmosphere, deepening of the equatorial Pacific thermocline appears to scale almost linearly with the throughflow-induced reduction in AMOC strength. Models with dynamic atmosphere do not follow this simple relation. There are indications that in four out of five models equatorial wind-stress anomalies amplify the tropical Pacific thermocline deepening. In summary, the models provide strong support for the hypothesized relationship between Panama closure and equatorial Pacific thermocline shoaling. Highlights: ► We study the effect of the Panama seaway on Pacific equatorial thermocline depth. ► Results from twelve model experiments are examined. ► Eastward net throughflow leads to a reduction in Atlantic overturning. ► We find a relationship between Panama closure and Pacific thermocline depth.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Unraveling the processes responsible for Earth’s climate transition from an “El Niño–like state” during the warm early Pliocene into a modern‐like “La Niña–dominated state” currently challenges the scientific community. Recently, the Pliocene climate switch has been linked to oceanic thermocline shoaling at ∼3 million years ago along with Earth’s final transition into a bipolar icehouse world. Here we present Pliocene proxy data and climate model results, which suggest an earlier timing of the Pliocene climate switch and a different chain of forcing mechanisms. We show that the increase in North Atlantic meridional overturning circulation between 4.8 and 4.0 million years ago, initiated by the progressive closure of the Central American Seaway, triggered overall shoaling of the tropical thermocline. This preconditioned the turnaround from a warm eastern equatorial Pacific to the modern equatorial cold tongue state about 1 million years earlier than previously assumed. Since ∼3.6–3.5 million years ago, the intensification of Northern Hemisphere glaciation resulted in a strengthening of the trade winds, thereby amplifying upwelling and biogenic productivity at low latitudes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Surface and thermocline conditions of the Western Pacific Warm Pool (WPWP) reflect changes in regional and basin scale ocean and atmosphere circulations and in turn may affect climate globally. Previous studies suggest that a range of factors influences the WPWP on different timescales, however the precise forcings and mechanisms are unclear. Combining surface and thermocline records from sediment cores offshore Papua New Guinea we explore the influence of local and remote processes on the WPWP in response to astronomical forcing and changing glacial-interglacial boundary conditions over the past 110 kyr. We find that thermocline temperatures change with variations in Earth's obliquity with higher temperatures coinciding with high obliquity, which is attributed to variations in subduction and advection of the South Pacific Tropical Water. In contrast, rainfall variations associated with meridional migrations of the Intertropical Convergence Zone are primarily driven by changes in insolation due to precession. Records of bulk sedimentary Ti/Ca and foraminiferal Nd/Ca indicate an additional influence of obliquity, which, however, cannot unambiguously be related to changes in precipitation. Finally, our results suggest a thermocline deepening during the Last Glacial Maximum (LGM). A compilation of available proxy records illustrates a dipole-like pattern of LGM thermocline depth anomalies with a shoaling (deepening) in the northern (southern) WPWP. A comparison of the proxy compilation with an ensemble of Paleoclimate Model Intercomparison Project (PMIP) climate model simulations reveals that the spatial pattern of LGM thermocline depth anomalies is mainly attributable to a contraction of the Pacific Walker circulation on its western side.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-01-08
    Description: The last extended time period when climate may have been warmer than today was during the Last Interglacial (LIG; ca. 129 to 120 thousand years ago). However, a global view of LIG precipitation is lacking. Here, seven new LIG climate models are compared to the first global database of proxies for LIG precipitation. In this way, models are assessed in their ability to capture important hydroclimatic processes during a different climate. The models can reproduce the proxy-based positive precipitation anomalies from the preindustrial period over much of the boreal continents. Over the Southern Hemisphere, proxy-model agreement is partial. In models, LIG boreal monsoons have 42% wider area than in the preindustrial and produce 55% more precipitation and 50% more extreme precipitation. Austral monsoons are weaker. The mechanisms behind these changes are consistent with stronger summer radiative forcing over boreal high latitudes and with the associated higher temperatures during the LIG.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: The semi-arid northeastern (NE) Brazil vegetation is largely dominated by Caatinga, one of the largest and richest dry forests in the world. Caatinga is a strategic biome, since it has borders with Cerrado, Atlantic forests and the Amazon, acting as a potential corridor (or barrier) for biotic interchange between these regions during evolutionary times. Therefore, accurate reconstructions of past vegetation, ecological and hydrological changes in this area are critical to understanding the dynamics of biome boundaries that may play an important role in dispersal and diversification mechanisms and, more specifically, the link between the long-term climate variability and tropical biodiversity. Here, we present high-resolution palynological and elemental data from marine core GeoB16205-4 retrieved off the Parnaíba River mouth (NE Brazil) mainly covering the Younger Dryas (YD). We show that the YD interval was predominantly wet in NE Brazil, yet it was not homogenous and two distinct phases could be distinguished. A marked intensification of wet conditions between ∼12.3 and 11.6 cal kyr BP was recorded by the expansion of tropical rainforest and tree ferns. These results are in agreement with the transient TraCE-21k coupled climate model simulation. We infer that the second pluvial phase of the YD is related to a weak AMOC due to meltwater pulses in the North Atlantic, which forces a southward shift of the Intertropical Convergence Zone and its associated rainfall. Our records provide new evidence on the establishment of an “eastern forest corridor” in the nowadays semi-arid Caatinga allowing for past biotic interchanges of plant species.
    Type: Article , PeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Springer
    In:  In: Integrated Analysis of Interglacial Climate Dynamics (INTERDYNAMIC). , ed. by Schulz, M. and Paul, A. Springer Briefs in Earth System Sciences . Springer, Berlin, pp. 37-42. ISBN 978-3-319-00692-5
    Publication Date: 2019-09-23
    Description: Environmental changes in the region connecting the Arctic Ocean and the northern North Atlantic were studied for the last 9,000 years (9 ka) by a combination of proxy-based paleoceanographic reconstructions as well as transient and time-slice simulations with climate models. Today, the area is perennially ice-covered in the west and ice-free in the east. Results show that sea-ice conditions were highly variable on short timescales in the last 9 ka. However, sea-ice proxies reveal an overall eastward movement of the sea-ice margin, in line with a decreasing influence of warm Atlantic Water advected to the Arctic Ocean. These cooling trends were rapidly reversed 100 years ago and replaced by the general warming in the Arctic. Model results show a consistently high freshwater input to the Arctic Ocean during the last 7 ka. The signal is robust against the Holocene cooling trend, however sensitive towards the warming trend of the last century. These results may play a role in the observed Arctic changes.
    Type: Book chapter , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Climate of the Past, 14 (8). pp. 1165-1178.
    Publication Date: 2021-02-08
    Description: Abrupt cold events have been detected in numerous North Atlantic climate records from the Holocene. Several mechanisms have been discussed as possible triggers for these climate shifts persisting decades to centuries. Here, we describe two abrupt cold events that occurred during an orbitally forced transient Holocene simulation using the Community Climate System Model version 3. Both events occurred during the late Holocene (4305–4267 BP and 3046–3018 BP for event 1 and event 2, respectively). They were characterized by substantial surface cooling (−2.3 and −1.8 ∘C, respectively) and freshening (−0.6 and −0.5 PSU, respectively) as well as severe sea ice advance east of Newfoundland and south of Greenland, reaching as far as the Iceland Basin in the northeastern Atlantic at the climaxes of the cold events. Convection and deep-water formation in the northwestern Atlantic collapsed during the events, while the Atlantic Meridional Overturning Circulation was not substantially affected (weakening by only about 10 % and 5 %, respectively). The events were triggered by prolonged phases of a positive North Atlantic Oscillation that caused substantial changes in the subpolar ocean circulation and associated freshwater transports, resulting in a weakening of the subpolar gyre. Our results suggest a possible mechanism by which abrupt cold events in the North Atlantic region may be triggered by internal climate variability without the need of an external (e.g., solar or volcanic) forcing.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-02-06
    Description: Variations in Amazonian hydrology and forest cover have major consequences for the global carbon and hydrological cycles as well as for biodiversity. Yet, the climate and vegetation history of the lowland Amazon basin and its effect on biogeography remain debated due to the scarcity of suitable high-resolution paleoclimate records. Here, we use the isotopic composition (δD and C) of plant-waxes from a high-resolution marine sediment core collected offshore the Amazon River to reconstruct the climate and vegetation history of the integrated lowland Amazon basin for the period from 50,000 to 12,800 yr before present. Our results show that δD values from the Last Glacial Maximum were more enriched than those from Marine Isotope Stage (MIS) 3 and the present-day. We interpret this trend to reflect long-term changes in precipitation and atmospheric circulation, with overall drier conditions during the Last Glacial Maximum. Our results thus suggest a dominant glacial forcing of the climate in lowland Amazonia. In addition to previously suggested thermodynamic mechanisms of precipitation change, which are directly related to temperature, we conclude that changes in atmospheric circulation are crucial to explain the temporal evolution of Amazonian rainfall variations, as demonstrated in climate model experiments. Our vegetation reconstruction based on C values shows that the Amazon rainforest was affected by intrusions of savannah or more open vegetation types in its northern sector during Heinrich Stadials, while it was resilient to glacial drying. This suggests that biogeographic patterns in tropical South America were affected by Heinrich Stadials in addition to glacial–interglacial climate variability.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...