ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2011-08-19
    Description: Uniaxial stress was used on Fe single crystals to induce muon precession frequency shifts. The frequency shift for a nominally pure Fe sample at 302K was -0.34 + or - .023 MHz per 100 microstrain along the 100 magnetization axis. This corresponds to a change of magnetic field at the muon of 25.1 + to 1.6G/100 magnetic moment. For an Fe (3wt%Si) single crystal the shifts were -0.348 + or - .008 MHz/100 magnetic moment. The agreement between the shifts for Fe and Fe(3wt%Si) shows the effect to be intrinsic to iron and not strongly impurity sensitive. These shifts and their temperature dependence (1/T) are dominated by the effect of strain inducted population shifts between crystallographically equivalent, but mgnetically inequivalent sites. Their magnitudes are in good agreement ith previous theoretical predictions and by previous extrapolation from calculations on Nb and V especially if both 4T(0) and 1T sites contribute comparably.
    Keywords: SOLID-STATE PHYSICS
    Type: Virginia State Univ. Activities of the Solid State Physics Research Inst.; 33 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-18
    Description: The temperature dependence of the interstitial magnetic field, B, as determined by the rotation of the spin of the muon, has been measured for dilute polycrystalline iron alloys with Mo, Ti, and Nb additions over a temperature range of 240 to 633 K. In all cases the behaviors differ from one another and from the Fe(Al) alloys previously studied. B, which is negative with respect to the magnetization, is increased in magnitude by Al and Mo, and decreased greatly by Ti. The addition of Nb creates a two-phase alloy from which the role of heterogeneity and/or strain on B in iron can be assessed. If the temperature dependence of the hyperfine field extracted from B for Fe(Mo) alloys is interpreted on the model previously used to discuss the Fe(Al) data, then the muon must be attracted to the Mo atom while repelled by the Al atoms as the temperature decreases.
    Keywords: SOLID-STATE PHYSICS
    Type: Journal of Magnetism and Magnetic Materials; 25; 1981
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...