ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (11)
  • 1
    Publication Date: 2011-08-24
    Keywords: STRUCTURAL MECHANICS
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 6; 341-348
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Description: The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.
    Keywords: STRUCTURAL MECHANICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 23; 620-624
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Keywords: AERODYNAMICS
    Type: Journal of Thermophysics and Heat Transfer (ISSN 0887-8722); 6; 48-54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-31
    Description: Hypersonic vehicles operate in a hostile aerothermal environment which has a significant impact on their aerothermostructural performance. Significant coupling occurs between the aerodynamic flow field, structural heat transfer, and structural response creating a multidisciplinary interaction. A long term goal of the Aerothermal Loads Branch at the NASA Langley Research Center is to develop a computational capability for integrated fluid, thermal and structural analysis of aerodynamically heated structures. The integrated analysis capability includes the coupling between the fluid and the structure which occurs primarily through the thermal response of the structure, because: (1) the surface temperature affects the external flow by changing the amount of energy absorbed by the structure, and (2) the temperature gradients in the structure result in structural deformations which alter the flow field and attendant surface pressures and heating rates. In the integrated analysis, a finite element method is used to solve: (1) the Navier-Stokes equations for the flow solution, (2) the energy equation of the structure for the temperature response, and (3) the equilibrium equations of the structure for the structural deformation and stresses.
    Keywords: AERODYNAMICS
    Type: Recent Advances in Multidisciplinary Analysis and Optimization, Part 2; p 971-990
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A three-dimensional flux-based thermal analysis method has been developed and its capability is demonstrated by predicting the transient nonlinear temperature response of a swept cowl leading edge subjected to intense three-dimensional aerodynamic heating. The predicted temperature response from the transient thermal analysis is used in a linear elastic structural analysis to determine thermal stresses. Predicted thermal stresses are compared with those obtained from a two-dimensional analysis which represents conditions along the chord where maximum heating occurs. Results indicate a need for a three-dimensional analysis to predict accurately the leading edge thermal stress response.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 90-1710
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: A finite element thermoviscoplastic analysis method, which employs a unified constitutive model proposed by Bodner and Partom, is used to predict rate-dependent nonlinear structural behavior. The method is evaluated by predicting stress-strain behavior of a uniaxially loaded bar of nickel-based superalloy (B1900 + Hf) material. The method is used to predict the time-dependent thermoviscoplastic response of a B1900 + Hf leading edge subjected to oscillating shock-shock interaction loading. Viscoplastic analysis shows that the leading edge experiences significant plastic straining. The plastic region increases with cyclic loading in the high heat flux area.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA PAPER 92-2537 , AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference; Apr 13, 1992 - Apr 15, 1992; Dallas, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The time-dependent thermo-viscoplastic response of aerospace structures subjected to intense aerothermal loads is predicted using the finite-element method. The finite-element analysis uses the Bodner-Partom unified viscoplastic constitutive relations to determine rate-dependent nonlinear material behavior. The methodology is verified by comparison with experimental data and other numerical results for a uniaxially-loaded bar. The method is then used (1) to predict the structural response of a rectangular plate subjected to line heating along a centerline, and (2) to predict the thermal-structural response of a convectively-cooled engine cowl leading edge subjected to aerodynamic shock-shock interference heating. Compared to linear elastic analysis, the viscoplastic analysis results in lower peak stresses and regions of plastic deformations.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-102761 , NAS 1.15:102761 , Thermal Structures Conference; Nov 13, 1990 - Nov 15, 1990; Charlottesville, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: A linear flux approach is developed for a finite element thermal-structural analysis of steady state thermal and structural problems. The element fluxes are assumed to vary linearly in the same form as the element unknown variables, and the finite element matrices are evaluated in closed form. Since numerical integration is avoided, significant computational time saving is achieved. Solution accuracy and computational speed improvements are demonstrated by solving several two and three dimensional thermal-structural examples.
    Keywords: STRUCTURAL MECHANICS
    Type: NASA-TM-102746 , NAS 1.15:102746 , Structures, Structural Dynamics and Materials Conference; Apr 03, 1989 - Apr 05, 1989; Mobile, AL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A linear flux approach is developed for a finite element thermal-structural analysis of steady-state thermal and structural problems. The element fluxes are assumed to vary linearly in the same form as the element unknown variables, and the finite element matrices are evaluated in closed form. Since numerical integration is avoided, significant computational time saving is achieved. Solution accuracy and computational speed improvements are demonstrated by solving several two-and three-dimensional thermal-structural examples.
    Keywords: STRUCTURAL MECHANICS
    Type: AIAA PAPER 89-1224 , AIAA, ASME, ASCE, AHS, and ASC, Structures, Structural Dynamics and Materials Conference; Apr 03, 1989 - Apr 05, 1989; Mobile, AL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...