ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Further insight into the structure and dynamics of amorphous water ice, at low temperatures, was obtained by trapping in it Ar, Ne, H2, and D2. Ballistic water-vapor deposition results in the growth of smooth, approximately 1 x 0.2 micrometer2, ice needles. The amorphous ice seems to exist in at least two separate forms, at T 〈 85 K and at 85 〈 T 〈 136.8 K, and transform irreversibly from one form to the other through a series of temperature-dependent metastable states. The channels formed by the water hexagons in the ice are wide enough to allow the free penetration of H2 and D2 into the ice matrix even in the relatively compact cubic ice, resulting in H2-(D2-) to-ice ratios (by number) as high as 0.63. The larger Ar atoms can penetrate only into the wider channels of amorphous ice, and Ne is an intermediate case. Dynamic percolation behavior explains the emergence of Ar and Ne (but not H2 and D2) for the ice, upon warming, in small and big gas jets. The big jets, each containing approximately 5 x 10(10) atoms, break and propel the ice needles. Dynamic percolation also explains the collapse of the ice matrix under bombardment by Ar , at a pressure exceeding 2.6 dyn cm-2, and the burial of huge amounts of gas inside the collapsed matrix, up to an Ar-to-ice of 3.3 (by number). The experimental results could be relevant to comets, icy satellites, and icy grain mantles in dense interstellar clouds.
    Keywords: Exobiology
    Type: Physical review. B, Condensed matter (ISSN 0163-1829); Volume 36; 17; 9219-27
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Volatile compounds in comets are the most pristine materials surviving from the time of formation of the Solar System, and thus potentially provide information about conditions that prevailed in the primitive solar nebula. Moreover, comets may have supplied a substantial fraction of the volatiles on the terrestrial planets, perhaps including organic compounds that played a role in the origin of life on Earth. Here we report the detection of hydrogen isocyanide (HNC) in comet Hyakutake. The abundance of HNC relative to hydrogen cyanide (HCN) is very similar to that observed in quiescent interstellar molecular clouds, and quite different from the equilibrium ratio expected in the outermost solar nebula, where comets are thought to form. Such a departure from equilibrium has long been considered a hallmark of gas-phase chemical processing in the interstellar medium, suggesting that interstellar gases have been incorporated into the comet's nucleus, perhaps as ices frozen onto interstellar grains. If this interpretation is correct, our results should provide constraints on the temperature of the solar nebula, and the subsequent chemical processes that occurred in the region where comets formed.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Nature (ISSN 0028-0836); Volume 383; 6599; 418-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The effect of radiogenic heating on the thermal evolution of spherical icy bodies with radii 1 km 〈 R 〈 100 km was investigated. The radioisotopes considered were 26Al, 40K, 232Th, 235U, and 238U. Except for the 26Al abundance, which was varied, the other initial abundances were kept fixed, at values derived from those of chondritic meteorites and corresponding to a gas-to-dust ratio of 1. The initial models were homogeneous and isothermal (To = 10 K) amorphous ice spheres, in a circular orbit at 10(4) AU from the Sun. The main object of this study was to examine the conditions under which the transition temperature from amorphous into cubic ice (Ta = 137 K) would be reached. It was shown that the influence of the short-lived radionuclide 26Al dominates the effect of other radioactive species for bodies of radii up to approximately 50 km. Consequently, if we require comets to retain their ice in amorphous form, as suggested by observations, an upper limit of approximately 4 x 10(-9) is obtained for the initial 26Al abundance in comets, a factor of 100 lower than that of the inclusions in the Allende meteorite. A lower limit for the formation time of comets may thus be derived. The possibility of a coexistence of molten cometary cores and extended amorphous ice mantles is ruled out. Larger icy spheres (R 〉 100 km) reached Ta even in the absence of 26Al, due to the decay of the other radionuclides. As a result, a crystalline core formed whose relative size depended on the composition assumed. Thus the outermost icy satellites in the solar system, which might have been formed of ice in the amorphous state, have probably undergone crystallization and may have exhibited eruptive activity when the gas trapped in the amorphous ice was released (e.g., Miranda).
    Keywords: Lunar and Planetary Science and Exploration
    Type: The Astrophysical journal (ISSN 0004-637X); Volume 319; 2; 993-1002
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The isotopic enrichment of argon, krypton, and xenon, when trapped in water ice, was studied experimentally. The isotopes were found to be enriched according to their (m1/m2)1/2 ratio. These enrichment factors could be useful for comparison among the uncertain cosmic or solar isotopic ratios, the hopeful in situ cometary ratio, and those in Earth's atmosphere, in the context of cometary delivery of volatiles to Earth.
    Keywords: Exobiology
    Type: Icarus (ISSN 0019-1035); Volume 142; 1; 298-300
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-24
    Description: It is shown that N2 may be present in the troposphere of Neptune in an amount difficult to evaluate but which could easily be as high as 0.003, while there is no evidence that it is present in the atmosphere of Uranus. The estimate of the helium abundance depends on the assumed value for N2. If there is no N2 in the observed region of the atmosphere of Uranus and an N2 mole fraction of 0.003 on Neptune, the central value of the estimates of the helium abundance are equal to 0.26 by mass in both planets, which is close to the protosolar value of 0.28. This would imply that the He/H2 ratios measured in the outer atmospheres of Uranus and Neptune are representative of the ratio in the primitive solar nebula and thus were not modified during planetary formation.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: Icarus (ISSN 0019-1035); 101; 1; p. 168-171.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-24
    Description: Spectra of the North Equatorial Belt of Jupiter were obtained in March 1992 at an unapodized resolution of 0.1/cm between 2450 and 2600/cm with the Fourier Transform Spectrometer at the 3.6 m Canada-France-Hawaii Telescope (CFHT) on Mauna Kea. Several emissions from the nu(sub 2) band of H3(+) were detected. The excitation temperature derived from the relative intensities of these emissions averaged over a wide range of longitudes is 800 +/- 100 K, and the H3(+) column density is 1.56(sup +1.0)(sub -0.5) x 10(exp 11)/sq. cm. In addition, several strong absorption features due to (13)CH4 were observed. A comparison between (12)CH4 and (13)CH4 absorptions allowed us to obtain a new measurement of the C-12/C-13 ratio. We found that this ratio, estimated for the first time in this spectral range, is 89 (+/- 25), in agreement with the terrestrial value.
    Keywords: ASTRONOMY
    Type: Planetary and Space Science (ISSN 0032-0633); 42; 5; p. 391-399
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-24
    Description: The composition of the jovian atmosphere from 0.5 to 21 bars along the descent trajectory was determined by a quadrupole mass spectrometer on the Galileo probe. The mixing ratio of He (helium) to H2 (hydrogen), 0.156, is close to the solar ratio. The abundances of methane, water, argon, neon, and hydrogen sulfide were measured; krypton and xenon were detected. As measured in the jovian atmosphere, the amount of carbon is 2.9 times the solar abundance relative to H2, the amount of sulfur is greater than the solar abundance, and the amount of oxygen is much less than the solar abundance. The neon abundance compared with that of hydrogen is about an order of magnitude less than the solar abundance. Isotopic ratios of carbon and the noble gases are consistent with solar values. The measured ratio of deuterium to hydrogen (D/H) of (5 +/- 2) x 10(-5) indicates that this ratio is greater in solar-system hydrogen than in local interstellar hydrogen, and the 3He/4He ratio of (1.1 +/- 0.2) x 10(-4) provides a new value for protosolar (solar nebula) helium isotopes. Together, the D/H and 3He/4He ratios are consistent with conversion in the sun of protosolar deuterium to present-day 3He.
    Keywords: Meteorology and Climatology
    Type: Science (ISSN 0036-8075); Volume 272; 5263; 846-9
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-24
    Description: Deuterated water (HDO) was detected in comet C/1995 O1 (Hale-Bopp) with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred D/H ratio in Hale-Bopp's water is (3.3 +/- 0.8) x 10(-4). This result is consistent with in situ measurements of comet P/Halley and the value found in C/1996 B2 (Hyakutake). This D/H ratio, higher than that in terrestrial water and more than 10 times the value for protosolar H2, implies that comets cannot be the only source for the oceans on Earth.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5352; 842-4
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-24
    Description: Deuterated hydrogen cyanide (DCN) was detected in a comet, C/1995 O1 (Hale-Bopp), with the use of the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. The inferred deuterium/hydrogen (D/H) ratio in hydrogen cyanide (HCN) is (D/H)HCN = (2.3 +/- 0.4) x 10(-3). This ratio is higher than the D/H ratio found in cometary water and supports the interstellar origin of cometary ices. The observed values of D/H in water and HCN imply a kinetic temperature 〉/=30 +/- 10 K in the fragment of interstellar cloud that formed the solar system.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Science (ISSN 0036-8075); Volume 279; 5357; 1707-10
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-24
    Description: Our studies on gas trapping in amorphous water ice at 24-100 K were extended, by using mixtures of CH4, CO, N2, and Ar, rather than single gases. In 1:1 gas:(water vapor) mixtures, the competition among these gases on the available sites in the ice showed that the trapping capacity for the various gases is determined not only by the structure and dynamics of the ice, but is also influenced by the gas itself. Whereas at 24-35 K all four gases are trapped in the ice indiscriminantly, at 50-75 K there is a clear enhancement, in the order of CH4 〉 CO 〉 N2 〉 or approximately Ar. This order is influenced by the gas-water interaction energy, the size of the trapped gas atom or molecule, the type of clathrate-hydrate formed (I or II) and, possibly, other factors. It seems that the gas can be trapped in the amorphous ice in several different locations, each being affected in a different way by the deposition temperature and gas composition. Once a gas atom or molecule is trapped in a specific location, it is predestined to emerge in one of eight different temperature ranges, which are associated with changes in the ice. The experimentally observed enhancements, together with the findings on the gas composition of comet Halley, might enable an estimation of the gas composition in the region of comet formation.
    Keywords: Exobiology
    Type: Physical review. B, Condensed matter (ISSN 0163-1829); Volume 38; 11; 7749-54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...