ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2022-09-29
    Description: Megathrust earthquakes impose changes of differential stress and pore pressure in the lithosphere‐asthenosphere system that are transiently relaxed during the postseismic period primarily due to afterslip, viscoelastic and poroelastic processes. Especially during the early postseismic phase, however, the relative contribution of these processes to the observed surface deformation is unclear. To investigate this, we use geodetic data collected in the first 48 days following the 2010 Maule earthquake and a poro‐viscoelastic forward model combined with an afterslip inversion. This model approach fits the geodetic data 14% better than a pure elastic model. Particularly near the region of maximum coseismic slip, the predicted surface poroelastic uplift pattern explains well the observations. If poroelasticity is neglected, the spatial afterslip distribution is locally altered by up to ±40%. Moreover, we find that shallow crustal aftershocks mostly occur in regions of increased postseismic pore‐pressure changes, indicating that both processes might be mechanically coupled.
    Description: Plain Language Summary: Large earthquakes modify the state of stress and pore pressure in the upper crust and mantle. These changes induce stress relaxation processes and pore pressure diffusion in the postseismic phase. The two main stress relaxation processes are postseismic slip along the rupture plane of the earthquake and viscoelastic deformation in the rock volume. These processes decay with time, but can sustain over several years or decades, respectively. The other process that results in volumetric crustal deformation is poroelasticity due to pore pressure diffusion, which has not been investigated in detail. Using postseismic surface displacement data acquired by radar satellites after the 2010 Maule earthquake, we show that poroelastic deformation may considerably affect the vertical component of the observed geodetic signal during the first months. Poroelastic deformation also has an impact on the estimation of the postseismic slip, which in turn affects the energy stored at the fault plane that is available for the next event. In addition, shallow aftershocks within the continental crust show a good, positive spatial correlation with regions of increased postseismic pore‐pressure changes, suggesting they are linked. These findings are thus important to assess the potential seismic hazard of the segment.
    Description: Key Points: A poro‐viscoelastic deformation model improves the geodetic data misfit by 14% compared to an elastic model that only accounts for afterslip. Poroelastic deformation mainly produces surface uplift and landward displacement patterns on the coastal forearc region. Neglecting poroelastic effects may locally alter the afterslip amplitude by up to ±40% near the region of maximum coseismic slip.
    Description: Helmholtz Association (亥姆霍兹联合会致力) http://dx.doi.org/10.13039/501100009318
    Keywords: ddc:551
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-10-06
    Description: The behavior of the shallow portion of the subduction zone, which generates the largest earthquakes and devastating tsunamis, is still insufficiently constrained. Monitoring only a fraction of a single megathrust earthquake cycle and the offshore location of the source of these earthquakes are the foremost reasons for the insufficient understanding. The frictional‐elastoplastic interaction between the megathrust interface and its overlying wedge causes variable surface strain signals such that the wedge strain patterns may reveal the mechanical state of the interface. To contribute to this understanding, we employ Seismotectonic Scale Modeling and simplify elastoplastic megathrust subduction to generate hundreds of analog seismic cycles at a laboratory scale and monitor the surface strain signals over the model's forearc across high to low temporal resolutions. We establish two compressional and critical wedge configurations to explore the mechanical and kinematic interaction between the shallow wedge and the interface. Our results demonstrate that this interaction can partition the wedge into different segments such that the anelastic extensional segment overlays the seismogenic zone at depth. Moreover, the different segments of the wedge may switch their state from compression/extension to extension/compression domains. We highlight that a more segmented upper plate represents megathrust subduction that generates more characteristic and periodic events. Additionally, the strain time series reveals that the strain state may remain quasi‐stable over a few seismic cycles in the coastal zone and then switch to the opposite mode. These observations are crucial for evaluating earthquake‐related morphotectonic markers and short‐term interseismic time series of the coastal regions.
    Description: Key Points: Analog earthquake cycle experiments provide observations to evaluate the surface strain signals from the shallow megathrust. The extensional segment of the forearc overlays the seismogenic zone at depth. The strain state may remain quasi‐stable over a few seismic cycles in the coastal zone.
    Description: SUBITOP Marie Sklodowska‐Curie Action project from the European Union's EU Framework Programme
    Description: Deutsche Forschungsgemeinschaft (CRC 1114) “Scaling Cascades in Complex Systems”
    Description: https://doi.org/10.5880/fidgeo.2022.015
    Keywords: ddc:551.8 ; ddc:550.78
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-01-21
    Description: An earthquake‐induced stress drop on a megathrust instigates different responses on the upper plate and slab. We mimic homogenous and heterogeneous megathrust interfaces at the laboratory scale to monitor the strain relaxation on two elastically bi‐material plates by establishing analog velocity weakening and neutral materials. A sequential elastic rebound follows the coseismic shear‐stress drop in our elastoplastic‐frictional models: a fast rebound of the upper plate and the delayed and smaller rebound on the elastic belt (model slab). A combination of the rebound of the slab and the rapid relaxation (i.e., elastic restoration) of the upper plate after an elastic overshooting may accelerate the relocking of the megathrust. This acceleration triggers/antedates the failure of a nearby asperity and enhances the early slip reversal in the rupture area. Hence, the trench‐normal landward displacement in the upper plate may reach a significant amount of the entire interseismic slip reversal and speeds up the stress build‐up on the upper plate backthrust that emerges self‐consistently at the downdip end of the seismogenic zones. Moreover, the backthrust switches its kinematic mode from a normal to reverse mechanism during the coseismic and postseismic stages, reflecting the sense of shear on the interface.
    Description: Plain Language Summary: Subduction zones, where one tectonic plate slides underneath the other, host the largest earthquakes on earth. Two plates with different physical properties define the upper and lower plates in the subduction zones. A frictional interaction at the interface between these plates prevents them from sliding and builds up elastic strain energy until the stress exceeds their strength and releases accumulated energy as an earthquake. The source of the earthquake is located offshore; hence illuminating the plates' reactions to the earthquakes is not as straightforward as the earthquakes that occur inland. Here we mimic the subduction zone at the scale of an analog model in the laboratory to generate analog earthquakes and carefully monitor our simplified model by employing a high‐resolution monitoring technique. We evaluate the models to examine the feedback relationship between upper and lower plates during and shortly after the earthquakes. We demonstrate that the plates respond differently and sequentially to the elastic strain release: a seaward‐landward motion of the upper plate and an acceleration in the lower plate sliding underneath the upper plate. Our results suggest that these responses may trigger another earthquake in the nearby region and speed up the stress build‐up on other faults.
    Description: Key Points: Seismotectonic scale models provide high‐resolution observations to study the surface deformation signals from shallow megathrust earthquakes. Surface displacement time‐series suggest a sequential elastic rebound of the upper plate and slab during great subduction megathrust earthquakes. Slip reversal may be caused by rapid restoration of the upper plate after overshooting and amplified upper plate motion.
    Description: SUBITOP Marie Sklodowska‐Curie Action project from the European Union's EU Framework Programme
    Description: Deutsche Forschungsgemeinschaft
    Description: https://doi.org/10.5880/fidgeo.2022.024
    Keywords: ddc:551.22 ; analog modeling ; megathrust earthquake ; seismic cycle ; elastic rebound ; upper plate ; overshooting
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-01-30
    Description: The Integrated Plate Boundary Observatory Chile (IPOC) in northern Chile has been monitoring the largest seismic gap along the South American subduction zone for 10 years. When IPOC was initiated, it has been 130 years the last great earthquake in the region had occurred. And since then the Iquique gap had been accumulating a slip deficit along a 〉500 km segment of the plate boundary. Since IPOC’s inception two large events, the 2007 M 7.7 Tocopilla and the M 8.1 2014 Iquique earthquakes, have broken parts of the gap. Both events were well recorded by IPOC, produce valuable data and advance our understanding of the subduction megathrust earthquake cycle. Last year, the Helmholtz Centre for Ocean Research Kiel (GEOMAR) has been extending IPOC with the GeoSEA ocean bottom observatory. In this ambitious project deformation will be measured where it cannot be picked up by land-based instruments, i. e. far offshore near the subduction trench. This will open the crucial updip section of the subduction plate boundary to research. IPOC has thus demonstrated the necessity of long-term monitoring to observe slow or rare events, but also that tenacity and patience pay off.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-01-31
    Description: The Atacama Fault System (AFS) is an active trench-parallel fault system, located in the forearc of N-Chile directly above the subduction zone interface. Due to its well-exposed position in the hyper arid forearc of N-Chile it is the perfect target to investigate the interaction between the deformation cycle in the overriding forearc and the subduction zone seismic cycle of the underlying megathrust. Although the AFS and large parts of the upper crust are devoid of any noteworthy seismicity or historically documented earthquakes, at least three M=7 earthquakes in the past 10 ky have been documented in the paleoseismological record, demonstrating the potential of large events in the future. We apply a two-fold approach to explore fault activation and reactivation patterns through time and to investigate the triggering potential of upper crustal faults. 1) A new methodology using high-resolution topographic data allows us to investigate the number of past earthquakes for any given segment of the fault system as well as the amount of vertical displacement of the last increment. This provides us with a detailed dataset of past earthquake rupture of upper plate faults which is potentially linked to large subduction zone earthquakes. 2) The IPOC Creepmeter array provides us with high-resolution time series of fault displacement accumulation for eleven stations along the four most active branches of the AFS.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-31
    Description: To this date, the question of why and how a plateau-type orogen formed with massive crustal thickening at the leading edge of western South America remains one of the hotly debated issues in geodynamics. During the Cenozoic, the Altiplano and Puna plateau of the Central Andes developed during continuous subduction of the oceanic Nazca plate in a convergent continental margin setting – a situation that is unique along the 60 000 km of convergent margins around the globe. The key challenge is to understand why a first-order mechanical instability of the later plateau extent developed along the central portion of the leading edge of South America only, as well as why and how this feature developed only during the Cenozoic, although the cycle of Andean subduction had been ongoing since at least the Jurassic. Although the widespread presence of partial melts or metamorphic fluids at mid-crustal level has been suggested to indicate upper plate weakening from heating and partial melting, it is recently found that upper plate strain weakening at lithospheric scale plays a significantly larger role. This first order control is tuned by factors affecting the strength balance between the upper plate lithosphere and the plate interface of the Nazca and South American plates such as variations in trenchward sediment flux affecting plate interface coupling and slab rollback or the role of inherited structures. Late initiation of orogeny in the Eocene, however, and its sustained action over tens of million years is now found to be related to the penetration of the slab into the lower mantle around 50 Ma ago, producing a slowdown of the lateral slab migration (‚slab anchoring’), and dragging the upper plate against the subduction zone by large-scale return flow. The combination of these parameters was highly uncommon during the Phanerozoic leading to very few plateau style orogens at convergent margins like the Cenozoic Central Andes in South America or the Laramide North American Cordillera.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2017-01-31
    Description: Subduction earthquakes are the most powerful naturally occurring terrestrial processes often resulting in catastrophic fatality counts and decimation of human infrastructure. Over the past decades, great efforts have been undertaken to improve the understanding of the subduction earthquake physics. The Integrated Plate Boundary Observatory in Chile (IPOC) is a multi-instrument network installed in 2007 in the Northern Chile Seismic Gap, where a large magnitude earthquake was expected soon. On April 1st 2014, a portion of the IPOC-monitored region broke, producing the Mw 8.1 Iquique earthquake. In the year leading up to this event, IPOC’s instruments captured some unusual transient seismic and geodetic signals, resulting in a unique dataset recording the preparatory phase of a large earthquake. We combined IPOC data with satellite radar interferometry (InSAR) data to analyze not only the earthquake itself but also the interseismic phase and a detailed foreshock series before the main event. We found that the earthquake ruptured a zone on the plate interface that was highly locked before the earthquake. Additionally, we were able to characterize the aseismic (silent) slip that occurred in the two weeks leading up to the event by combining seismic and geodetic data. Application of these analyses in real-time might enable geoscientists to identify runaway processes that can precede large subduction earthquakes.
    Type: Article , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-04-04
    Description: The postseismic deformation captured with continuous Global Positioning System (cGPS) monitoring following many recent mega-thrust events has been shown to be a signal composed of two dominant processes: afterslip on the plate interface and viscoelastic relaxation of the continental and oceanic mantles in response to the coseismic stress perturbation. Following the south-central Chile 2010 Maule Mw 8.8 earthquake, the time series from the regional cGPS network show a distinct curvature in the pathway of the horizontal motion that is not easily fit by a stationary decaying pattern of afterslip in combination with viscoelastic relaxation. Here we show that with realistic assumptions about the long-term decay of the afterslip signal, the postseismic signal can be decomposed into three first-order contributing processes: plate interface re-locking, plate interface afterslip, and mantle viscoelastic relaxation. From our analyses we conclude that the plate interface recovers its interseismic locking state rapidly (model space ranges between an instant recovery and a period of 1 year); a finding that supports laboratory experimental evidence as well as some recent studies of aftershocks and postseismic surface deformation. Furthermore, re-locking is the main cause of the curvature in the cGPS signal, and this study presents a plausible range of geodetic re-locking rates following a megathrust earthquake.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-03-06
    Description: The excellent spatial coverage of continuous GPS stations in the region affected by the Maule Mw = 8.8 2010 earthquake, combined with the proximity of the coast to the seismogenic zone, allows us to model megathrust afterslip on the plate interface with unprecedented detail. We invert post-seismic observations from continuous GPS sites to derive a time-variable model of the first 420 d of afterslip. We also invert co-seismic GPS displacements to create a new co-seismic slip model. The afterslip pattern appears to be transient and non-stationary, with the cumulative afterslip pattern being formed from afterslip pulses. Changes in static stress on the plate interface from the co- and post-seismic slip cannot solely explain the aftershock patterns, suggesting that another process – perhaps fluid related – is controlling the lower magnitude aftershocks. We use aftershock data to quantify the seismic coupling distribution during the post-seismic phase. Comparison of the post-seismic behaviour to interseismic locking suggests that highly locked regions do not necessarily behave as rate-weakening in the post-seismic period. By comparing the inter-seismic locking, co-seismic slip, afterslip, and aftershocks we attempt to classify the heterogeneous frictional behaviour of the plate interface.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-03-29
    Description: The Lower Saxony Basin (LSB) is a part of the post-Variscan Central European Basin System. We used a 3-D reflection seismic dataset in the northern LSB, provided by RWE-DEA AG, Hamburg (c.f. Lohr et al. submitted) for our investigation, which is concerned with the detailed structural and kinematic analysis of a flower structure within Mesozoic strata. This data is used in turn to determine input parameters for further 3-D geometrical retro-deformation. The retro-deformation verifies our assumptions about the structure and tectonic processes, and gives further information about sub-seismic strain distribution with respect to the branch faults of the flower structure.
    Description: conference
    Keywords: 551 ; TQC 220 ; TSB 000 ; VAE 820 ; VAE 830 ; VEB 110 ; VAE 120 ; VBE 000 ; Reflexionsseismik {Geophysik} ; Mitteleuropa {Geophysik} ; Sedimentationsbecken als Erdkrustentypen {Geologie} ; Bruchschollenstrukturen {Geologie} ; Norddeutsche Senke {Geologie} ; Methodik {Strukturgeologie} ; Modellierung von Prozessen in der Geosphäre ; Niedersächsiches Becken ; Dreidimensionale Seismik ; Strukturgeologie ; Modell
    Language: German
    Type: anthologyArticle , publishedVersion
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...