ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-31
    Description: At high Arctic stations such as Barrow, Alaska, springtime near-surface ozone amounts fluctuate between the highest and lowest values seen during the course of the year. Episodes when the surface ozone concentration is essentially zero last up to several days during this time of year. In the Arctic Gas and Aerosol Sampling Program (AGASP-I and AGASP-II) in 1983 and 1986, it was found that ozone concentrations often showed a very steep gradient in altitude with very low values near the surface. The cold temperatures, and snow-covered ground make it unlikely that the surface itself would rapidly destroy significant amounts of ozone. The AGASP aircraft measurements that found low ozone concentrations in the lowest layers of the troposphere also found that filterable excess bromine (the amount of bromine in excess of the sea salt component) in samples collected wholly or partially beneath the temperature inversion had higher bromine concentrations than other tropospheric samples. Of the four lowest ozone minimum concentrations, three of them were associated with the highest bromine enrichments. Surface measurements of excess filterable bromine at Barrow show a strong seasonal dependence with values rising dramatically early in March, then declining in May. The concentration of organic bromine gases such as bromoform rise sharply during the winter and then begin to decline after March with winter and early spring values at least three times greater than the summer minimum.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA, Goddard Space Flight Center, Polar Ozone Workshop. Abstracts; p 201-203
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: From a network of surface ozone monitoring sites distributed primarily over the Atlantic and Pacific Oceans, the seasonal, day-to-day, and diurnal patterns are delineated. At most of the NH (Northern Hemisphere) sites there is a spring maximum and late summer or autumn minimum. At Barrow, AK (70 deg N) and Barbados (14 deg N), however, there is a winter maximum, but the mechanisms producing the maximum are quite different. All the sites in the SH (Southern Hemisphere) show winter maxima and summer minima. At the subtropical and tropical sites, there are large day-to-day variations that reflect the changes in flow patterns. Air of tropical origin has much lower ozone concentrations than air from higher latitudes. At the two tropical sites (Barbados and Samoa), there is a marked diurnal ozone variation with highest amounts in the early morning and lowest values in the afternoon. At four of the locations (Barrow, AK; Mauna Loa, HI; American Samoa; and South Pole), there are 15- through 20-year records which allow us to look at longer term changes. At Barrow there has been a large summer increase over the 20 years of measurements. At South Pole, on the other hand, summer decreases have led to an overall decline in surface ozone amounts.
    Keywords: GEOPHYSICS
    Type: NASA. Goddard Space Flight Center, Ozone in the Troposphere and Stratosphere, Part 1; p 19-23
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-29
    Description: A network of 10 southern hemisphere tropical and Subtropical stations, designated the Southern Hemisphere ADditional OZonesondes, (SHADOZ) project and established from operational sites, provided over 1000 ozone profiles during the period 1998-2000. Balloon-borne electrochemical concentration cell (ECC) ozonesondes, combined with standard radiosondes for pressure, temperature and relative humidity measurements, collected profiles in the troposphere and lower- to mid-stratosphere at: Ascension Island; Nairobi, Kenya; Irene, South Africa: Reunion Island, Watukosek Java; Fiji; Tahiti; American Samoa; San Cristobal, Galapagos; Natal, Brazil.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-29
    Description: We use clear sky heating rates to show that convective outflow in the tropics decreases rapidly with height between the 350 K and 360 K potential temperature surfaces (or between roughly 13 and 15 km). There is also a rapid fall-off in the pseudoequivalent potential temperature probability distribution of near surface air parcels between 350 K and 360 K. This suggests that the vertical variation of convective outflow in the upper tropical troposphere is to a large degree determined by the distribution of sub cloud layer entropy.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-29
    Description: During the Aerosols99 trans-Atlantic cruise from Norfolk, VA, to Cape Town, South Africa, daily ozonesondes were launched from the NOAA R/V Ronald H Brown between 17 January and 6 February l999. A composite of tropospheric ozone profiles along the latitudinal transect shows 4 zones, which are interpreted using correlative shipboard ozone, CO, water vapor, and overhead aerosol optical thickness measurements. Elevated ozone associated with biomass burning north of the ITCZ (Intertropical Convergence Zone) is prominent at 3-5 km from 10-0N, but even higher ozone (100 ppbv, 7-10 km) occurred south of the ITCZ, where it was not burning. Column-integrated tropospheric ozone was 44 Dobson Units (DU) in one sounding, 10 DU lower than the maximum in a January-February 1993 Atlantic cruise with ozonesondes [Weller et al., 1996]. TOMS tropospheric ozone shows elevated ozone extending throughout the tropical Atlantic in January 1999. Several explanations are considered. Back trajectories, satellite aerosol observations and shipboard tracers suggest a combination of convection and interhemispheric transport of ozone and/or ozone precursors, probably amplified by a lightning NO source over Africa.
    Keywords: Environment Pollution
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-29
    Description: This is the second 'reference' or 'archival' paper for the SHADOZ (Southern Hemisphere Additional Ozonesondes) network and is a follow-on to the recently accepted paper with similar first part of title. The latter paper compared SHADOZ total ozone with satellite and ground-based instruments and showed that the equatorial wave-one in total ozone is in the troposphere. The current paper presents details of the wave-one structure and the first overview of tropospheric ozone variability over the southern Atlantic, Pacific and Indian Ocean basins. The principal new result is that signals of climate effects, convection and offsets between biomass burning seasonality and tropospheric ozone maxima suggest that dynamical factors are perhaps more important than pollution in determining the tropical distribution of tropospheric ozone. The SHADOZ data at (〈http://code9l6.gsfc.nasa.gov/Data_services/shadoz〉) are setting records in website visits and are the first time that the zonal view of tropical ozone structure has been recorded - thanks to the distribution of the 10 sites that make up this validation network.
    Keywords: Geophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: The North Atlantic Ocean is bordered by continents which may each, under the influence of seasonal weather patterns, act as sources of natural and anthropogenic trace gas and particulate species. Photochemically active species such as carbon monoxide (CO) react to form ozone (O3), a species of critical importance in global climate change. CO is sparingly soluble in water, and the relatively long lifetime of CO in the troposphere makes this species an ideal tracer of air masses with origin over land. We have measured CO using a nondispersive infrared gas filter correlation analyzer at Mace Head on the west coast of Ireland nearly continuously since August 9, 1991. Measurements of CO were acquired at 20-sec resolution and recorded as 60-sec averages. Daily, monthly, and diurnal variation data characteristics of CO mixing ratios observed at this site are reported. Depending on source regions of air parcels passing over this site, 60-min concentrations of CO range from clean air values of approximately 90 ppbv to values in excess of 300 ppbv. Data characterizing the correlation between 60-min CO and O3 mixing ratio data observed at this site are reported also.
    Keywords: ENVIRONMENT POLLUTION
    Type: NASA. Goddard Space Flight Center, Ozone in the Troposphere and Stratosphere, Part 1; p 134-137
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: Abstract: Since 1998 the Southern Hemisphere ADditional OZonesondes (SHADOZ) project has collected more than 2000 ozone profiles from a dozen tropical and subtropical sites using balloon-borne electrochemical concentration cell (ECC) ozonesondes. The data (with accompanying pressure-temperature-humidity soundings) are archived. Analysis of ozonesonde imprecision within the SHADOZ dataset revealed that variations in ozonesonde technique could lead to station-to-station biases in the measurements. In this paper imprecisions and accuracy in the SHADOZ dataset are examined in light of new data. When SHADOZ total ozone column amounts are compared to version 8 TOMS (2004 release), discrepancies between sonde and satellite datasets decline 1-2 percentage points on average, compared to version 7 TOMS. Variability among stations is evaluated using total ozone normalized to TOMS and results of laboratory tests on ozonesondes (JOSE-2O00, Julich Ozonesonde Intercomparison Experiment). Ozone deviations from a standard instrument in the JOSE flight simulation chamber resemble those of SHADOZ station data relative to a SHADOZ-defined climatological reference. Certain systematic variations in SHADOZ ozone profiles are accounted for by differences in solution composition, data processing and instrument (manufacturer). Instrument bias leads to a greater ozone measurement above 25 km over Nairobi and to lower total column ozone at three Pacific sites compared to other SHADOZ stations at 0-20 deg.S.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-17
    Description: On this first North American to southern African oceanographic cruise with ozonesonde launches (January and February 1999 on board the NOAA Research Vessel Ronald H Brown between Norfolk, VA, and Cape Town, South Africa) we found: (1) high ozone, CO, and aerosols off northern equatorial Africa from biomass burning, but even higher ozone concentrations off southern Africa which was not burning - an "ozone paradox"; (2) TOMS satellite evidence that south Atlantic elevated ozone in January-February 1999 was a regional feature similar in extent to the well-known September-October ozone maximum. Several mechanisms are considered to explain the "ozone paradox." Convection transporting air from the lower troposphere rich in ozone and/or ozone precursors to the upper troposphere through the ITCZ (intertropical Convergence Zone) may lead to cross-hemisphere transport of pollution. This is supported by trajectory linkage of lower-tropospheric ozone maxima with smoke seen by the TOMS satellite. Lightning-generated NO (nitric oxide) leading to ozone peaks of 〉 100 ppbv observed at 7-10 km altitude is another explanation. The TRMM (Tropical Rainfall Measuring Mission) Lightning Imaging Sounder shows many lightning flashes over southern Africa, which trajectories link to the high-ozone layers south of the ITCZ. The highest ozone peaks in the middle troposphere correspond to very low water vapor, which may point to photochemical destruction of ozone or subsidence from the upper troposphere which had interacted with stratospheric ozone.
    Keywords: Environment Pollution
    Type: Quadrennial Ozone Symposium; Jul 03, 2000 - Jul 08, 2000; Hokkaido; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-17
    Description: In the past 5 years, new tropical ozone data products have been developed from TOMS and other satellites, During this period, global chemical-transport models have been used for ozone assessment studies. However, there has been a lack of independent ozone profiles in the tropics for evaluation of the data sets and models. In 1998, NASA's Goddard Space Flight Center, Wallops Flight Facility and NOAA's CMDL (Climate Monitoring and Diagnostics Lab), began a 2-year project to collect a consistent data set by augmenting ozonesonde launches at southern hemisphere tropical sites The measurements are available to the scientific community at a single electronic location - the SHADOZ website at NASA/Goddard: http://code9l6.gsfc.nasa.gov/Data services/Shadoz/shadoz hmpg2.html. Stations in SHADOZ include four islands in the Pacific: Fiji, Tahiti, San Cristobal (Galapagos) and American Samoa. Two sites are at and in the Atlantic: Natal (Brazil) and Ascension Island. Three other sites span Africa (Nairobi and Irene, South Africa) and the Indian Ocean (Reunion Island and Watukosek in Java, Indonesia). All SHADOZ sites are using ECC-type sondes, with the conversion from JMD sondes at Java in 1999, but there are variations in sonde preparation technique and data processing. During the 1998-1999 period, more than 550 sondes were incorporated into the SHADOZ data base. Examples from these measurements illustrate the tropical wave-one pattern in total ozone which is easily detectable by satellite. They also show that the wave-one pattern appears to be in the troposphere, as assumed in creating the modified-residual tropospheric ozone data product from TOMS. SHADOZ will add data from intensive field campaigns from time to time. Recent contributions to the SHADOZ archive are from the INDOEX (Indian Ocean Experiment January-March 1999)sondes at the Maldives (5N, 73E) and 27 sondes on the US NOAA oceanographic vessel, the FIN Ronald H Brown between Virginia (US) and Mauritius via CapeTown, during a cruise in January and February 1999. In 2000, as part of the SAFARI-2000 experiment and a validation project called Southern African Validation for EOS (SAVE), enhancement of ozonesonde launches at Irene (South Africa) will extend the data set from this site beyond the 1998-1999 period.
    Keywords: Environment Pollution
    Type: Quadrennial Ozone Symposium; Jul 03, 2000 - Jul 08, 2000; Hokkaido; Japan
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...