ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: We developed an ecosystem/biogeochemical model system, which includes multiple phytoplankton functional groups and carbon cycle dynamics, and applied it to investigate physical-biological interactions in Icelandic waters. Satellite and in situ data were used to evaluate the model. Surface seasonal cycle amplitudes and biases of key parameters (DIC, TA, pCO2, air-sea CO2 flux, and nutrients) are significantly improved when compared to surface observations by prescribing deep water values and trends, based on available data. The seasonality of the coccolithophore and "other phytoplankton" (diatoms and dinoflagellates) blooms is in general agreement with satellite ocean color products. Nutrient supply, biomass and calcite concentrations are modulated by light and mixed layer depth seasonal cycles. Diatoms are the most abundant phytoplankton, with a large bloom in early spring and a secondary bloom in fall. The diatom bloom is followed by blooms of dinoflagellates and coccolithophores. The effect of biological changes on the seasonal variability of the surface ocean pCO2 is nearly twice the temperature effect, in agreement with previous studies. The inclusion of multiple phytoplankton functional groups in the model played a major role in the accurate representation of CO2 uptake by biology. For instance, at the peak of the bloom, the exclusion of coccolithophores causes an increase in alkalinity of up to 4 mol kg(sup 1) with a corresponding increase in DIC of up to 16 mol kg(sup 1). During the peak of the bloom in summer, the net effect of the absence of the coccolithophores bloom is an increase in pCO2 of more than 20 atm and a reduction of atmospheric CO2 uptake of more than 6 mmolm(sup 2) d(sup 1). On average, the impact of coccolithophores is an increase of air-sea CO2 flux of about 27 %. Considering the areal extent of the bloom from satellite images within the Irminger and Icelandic Basins, this reduction translates into an annual mean of nearly 1500 tonnes C yr(sup 1).
    Keywords: Oceanography; Geosciences (General)
    Type: GSFC-E-DAA-TN9172 , Geoscientific Model Development; 5; 683-707
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-10
    Description: Water column data of carbon and carbon relevant hydrographic and hydrochemical parameters from 188 previously non-publicly available cruises in the Arctic, Atlantic, and Southern Ocean have been retrieved and merged into a new database: CARINA (CARbon IN the Atlantic). The data have been subject to rigorous quality control (QC) in order to ensure highest possible quality and consistency. The data for most of the parameters included were examined in order to quantify systematic biases in the reported values, i.e. secondary quality control. Significant biases have been corrected for in the data products, i.e. the three merged files with measured, calculated and interpolated values for each of the three CARINA regions; the Arctic Mediterranean Seas (AMS), the Atlantic (ATL) and the Southern Ocean (SO). With the adjustments the CARINA database is consistent both internally as well as with GLODAP (Key et al., 2004) and is suitable for accurate assessments of, for example, oceanic carbon inventories and uptake rates and for model validation. The Arctic Mediterranean Seas include the Arctic Ocean and the Nordic Seas, and the quality control was carried out separately in these two areas. This contribution provides an overview of the CARINA data from the Nordic Seas and summarises the findings of the QC of the salinity data. One cruise had salinity data that were of questionable quality, and these have been removed from the data product. An evaluation of the consistency of the quality controlled salinity data suggests that they are consistent to at least ±0.005.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    157, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy
    In:  ORNL/CDIAC . 157, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U. S. Department of Energy, Oak Ridge, TN, USA, VII, 11 pp.
    Publication Date: 2019-10-10
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-05
    Description: In summer 1996, a tracer release experiment using sulphur hexafluoride (SF6) was launched in the intermediate-depth waters of the central Greenland Sea (GS), to study the mixing and ventilation processes in the region and its role in the northern limb of the Atlantic overturning circulation. Here we describe the hydrographic context of the experiment, the methods adopted and the results from the monitoring of the horizontal tracer spread for the 1996–2002 period documented by ∼10 shipboard surveys. The tracer marked “Greenland Sea Arctic Intermediate Water” (GSAIW). This was redistributed in the gyre by variable winter convection penetrating only to mid-depths, reaching at most 1800 m depth during the strongest event observed in 2002. For the first 18 months, the tracer remained mainly in the Greenland Sea. Vigorous horizontal mixing within the Greenland Sea gyre and a tight circulation of the gyre interacting slowly with the other basins under strong topographic influences were identified. We use the tracer distributions to derive the horizontal shear at the scale of the Greenland Sea gyre, and rates of horizontal mixing at ∼10 and ∼300 km scales. Mixing rates at small scale are high, several times those observed at comparable depths at lower latitudes. Horizontal stirring at the sub-gyre scale is mediated by numerous and vigorous eddies. Evidence obtained during the tracer release suggests that these play an important role in mixing water masses to form the intermediate waters of the central Greenland Sea. By year two, the tracer had entered the surrounding current systems at intermediate depths and small concentrations were in proximity to the overflows into the North Atlantic. After 3 years, the tracer had spread over the Nordic Seas basins. Finally by year six, an intensive large survey provided an overall synoptic documentation of the spreading of the tagged GSAIW in the Nordic Seas. A circulation scheme of the tagged water originating from the centre of the GS is deduced from the horizontal spread of the tracer. We present this circulation and evaluate the transport budgets of the tracer between the GS and the surroundings basins. The overall residence time for the tagged GSAIW in the Greenland Sea was about 2.5 years. We infer an export of intermediate water of GSAIW from the GS of 1 to 1.85 Sv (1 Sv = 106 m3 s−1) for the period from September 1998 to June 2002 based on the evolution of the amount of tracer leaving the GS gyre. There is strong exchange between the Greenland Sea and Arctic Ocean via Fram Strait, but the contribution of the Greenland Sea to the Denmark Strait and Iceland Scotland overflows is modest, probably not exceeding 6% during the period under study.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: The oceans are a major sink for atmospheric carbon dioxide (CO2). Historically, observations have been too sparse to allow accurate tracking of changes in rates of CO2 uptake over ocean basins, so little is known about how these vary. Here, we show observations indicating substantial variability in the CO2 uptake by the North Atlantic on time scales of a few years. Further, we use measurements from a coordinated network of instrumented commercial ships to define the annual flux into the North Atlantic, for the year 2005, to a precision of about 10%. This approach offers the prospect of accurately monitoring the changing ocean CO2 sink for those ocean basins that are well covered by shipping routes.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-08-05
    Description: A climatological mean distribution for the surface water pCO2 over the global oceans in non-El Niño conditions has been constructed with spatial resolution of 4° (latitude) ×5° (longitude) for a reference year 2000 based upon about 3 million measurements of surface water pCO2 obtained from 1970 to 2007. The database used for this study is about 3 times larger than the 0.94 million used for our earlier paper [Takahashi et al., 2002. Global sea–air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects. Deep-Sea Res. II, 49, 1601–1622]. A time-trend analysis using deseasonalized surface water pCO2 data in portions of the North Atlantic, North and South Pacific and Southern Oceans (which cover about 27% of the global ocean areas) indicates that the surface water pCO2 over these oceanic areas has increased on average at a mean rate of 1.5 μatm y−1 with basin-specific rates varying between 1.2±0.5 and 2.1±0.4 μatm y−1. A global ocean database for a single reference year 2000 is assembled using this mean rate for correcting observations made in different years to the reference year. The observations made during El Niño periods in the equatorial Pacific and those made in coastal zones are excluded from the database. Seasonal changes in the surface water pCO2 and the sea-air pCO2 difference over four climatic zones in the Atlantic, Pacific, Indian and Southern Oceans are presented. Over the Southern Ocean seasonal ice zone, the seasonality is complex. Although it cannot be thoroughly documented due to the limited extent of observations, seasonal changes in pCO2 are approximated by using the data for under-ice waters during austral winter and those for the marginal ice and ice-free zones. The net air–sea CO2 flux is estimated using the sea–air pCO2 difference and the air–sea gas transfer rate that is parameterized as a function of (wind speed)2 with a scaling factor of 0.26. This is estimated by inverting the bomb 14C data using Ocean General Circulation models and the 1979–2005 NCEP-DOE AMIP-II Reanalysis (R-2) wind speed data. The equatorial Pacific (14°N–14°S) is the major source for atmospheric CO2, emitting about +0.48 Pg-C y−1, and the temperate oceans between 14° and 50° in the both hemispheres are the major sink zones with an uptake flux of −0.70 Pg-C y−1 for the northern and −1.05 Pg-C y−1 for the southern zone. The high-latitude North Atlantic, including the Nordic Seas and portion of the Arctic Sea, is the most intense CO2 sink area on the basis of per unit area, with a mean of −2.5 tons-C month−1 km−2. This is due to the combination of the low pCO2 in seawater and high gas exchange rates. In the ice-free zone of the Southern Ocean (50°–62°S), the mean annual flux is small (−0.06 Pg-C y−1) because of a cancellation of the summer uptake CO2 flux with the winter release of CO2 caused by deepwater upwelling. The annual mean for the contemporary net CO2 uptake flux over the global oceans is estimated to be −1.6±0.9 Pg-C y−1, which includes an undersampling correction to the direct estimate of −1.4±0.7 Pg-C y−1. Taking the pre-industrial steady-state ocean source of 0.4±0.2 Pg-C y−1 into account, the total ocean uptake flux including the anthropogenic CO2 is estimated to be −2.0±1.0 Pg-C y−1 in 2000.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...