ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (13)
Collection
Keywords
  • 1
    Publication Date: 2011-08-19
    Description: Magnetic properties of the high-latitude tail boundary are examined with IMP 8 magnetometer data. The high-latitude tail boundary separates the tail lobe from the magnetosheath. Magnetic fields are stable in the tail lobe, but very irregular in the magnetosheath. Boundary crossings are marked by the rotation of magnetic components parallel to the boundary plane. The magnetic component normal to the boundary, if any, is very small in comparison to this rotational change. Despite large magnetic fluctuations in the magnetosheath, the magnetosheath-side field orientation is consistent with the draping of the IMF against the magnetotail. The boundary current has a component parallel to the lobe field (tail-aligned current), as well as a circumferential component. The IMF orientation controls the sheath-side B(Y), while the lobe-side field has a more rigid configuration flaring antisunward.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 96; 9521-953
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-19
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 95; 20759-20
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: The poleward arc system of a double oval distribution is shown to activate at the end of the optical expansion phase signifying the beginning of substorm recovery. The velocity dispersed ion signature (VDIS) can exist coincident with this discrete aurora developing on the most poleward oval. Although the VDIS is usually associated with ion beams in the plasma sheet boundary layer, it is demonstrated that the ionospheric signature is not beamlike but distributed in pitch angle. At the time when the double oval begins to form, the magnetic field in the magnetotail lobe becomes less flared and can show Pc 5 period oscillations. Similar pulsations also exist in the ionosphere associated with the most poleward oval and with stationary surge formation. Theoretical considerations link this phenomenon with a wave source tailward of x(sub GSE) = -30R(sub E) and fast mode evanescent waves propagating earthward in the tail lobe region. In this case the magnetotail appears to act like a waveguide and the plasma sheet boundary layer as a resonance region. This implies that the coupling of this fast mode waves is with the plasma sheet boundary layer and not with dipolar like field lines. The implications of this for the reconnection model of substorms are discussed.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 12,093-12,102
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: During the later stages of the auroral substorm the luminosity distribution frequently resembles a double oval, one oval lying poleward of the normal or main UV auroral oval. We interpret the double oval morphology as being due to the plasma sheet boundary layer becoming active in the later stages of the substorm process. If the disturbance engulfs the nightside low-latitude boundary layers, then the double oval configuration extends into the dayside ionospheric region. The main UV oval is associated with the inner portion of the central plasma sheet and can rapidly change its auroral character from being diffuse to discrete. This transition is associated with the substorm process and is fundamental to understanding the near-Earth character of substorm onset. On the other hand, the poleward arc system in the nightside ionosphere occurs adjacent to or near the open-closed field line boundary. This system activates at the end of the optical expansion phase and is a part of the recovery phase configuration in substorms where it occurs. These two source regions for nightside discrete auroral arcs are important in resolving the controversy concerning the mapping of arcs to the magnetosphere. The dayside extension of this double oval configuration is also investigated and shows particle signatures which differ considerably from those on the nightside giving clues to the magnetospheric source regions of the aurora in the two local time sectors. Near-Earth substorm onsets are shown to be coupled to processes occurring much further tailward and indicate the importance of understanding the temporal development of features within the double oval. Using 'variance images,' a new technqiue for the investigation of these dynamics is outlined.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A7; p. 12,075-12,092
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: This paper reports the multisatellite and ground observations of two pseudo-substorm onset events that occurred successively at 0747 UT and 0811 UT, May 30, 1985, with more attention to the 0747 UT onset. The distinguishing features of the 0747 UT event are as follows. (1) The substorm-associated tail reconfiguration started in a very localized region in the near-Earth magnetotail. (2) The magnitude of the current disruption decreased markedly as the disruption region expanded tailward. (3) On the ground the onset of a very small negative bay (approx. 40 nT) was observed simultaneously with the onset of the current disruption, but over a much wider local time sector than the near-Earth tail reconfiguration. Positive bay onsets at mid-latitudes also had a longitudinally wide distribution. From these features we infer than in the present event the current disruption took place filamentarily near AMPTE/CCE at approx. 8.8 R(sub E). It is also inferred that pseudo-substorm onsets are distinguished from standard substorm onsets by the absence of a global expansion of the current disruption, and that the spatial scales of the onset region in the magnetosphere is not a major difference between the two. The present study suggests that the spatial distribution of the magnetic distortion before onsets is an important factor to determine the expansion scale of the current disruption. It is also suggested that the current disruption is basically an internal process of the magnetosphere.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,355-19,367
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: A new method is used to examine the radial expansion of the tail current disruption and the substorm onset region. The expansion of the disruption region is specified by examining the time sequence (phase relationship) between the north-south component and the sun-earth component. This method is tested by applying it to the March 6, 1979, event. The phase relationship indicates that the current disruption started on the earthward side of the spacecraft, and expanded tailward past the spacecraft. The method was used for 13 events selected from the ISEE magnetometer data. The results indicate that the current disruption usually starts in the near-earth magnetotail and often within 15 RE from the earth.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; A3 M; 3129-313
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-26
    Description: The present study statistically examines the characteristics of energetic ions in the plasma sheet using the Geotail/Energetic Particle and Ion Composition data. An emphasis is placed on the O+ ions, and the characteristics of the H+ ions are used as references. The following is a summary of the results. (1) The average O+ energy is lower during solar maximum and higher during solar minimum. A similar tendency is also found for the average H+ energy, but only for geomagnetically active times; (2) The O+ -to -H+ ratios of number and energy densities are several times higher during solar maximum than during solar minimum; (3) The average H+ and O+ energies and the O+ -to -H+ ratios of number and energy densities all increase with geomagnetic activity. The differences among different solar phases not only persist but also increase with increasing geomagnetic activity; (4) Whereas the average H+ energy increases toward Earth, the average O+ energy decreases toward Earth. The average energy increases toward dusk for both the H+ and O+ ions; (5) The O+ -to -H+ ratios of number and energy densities increase toward Earth during all solar phases, but most clearly during solar maximum. These results suggest that the solar illumination enhances the ionospheric outflow more effectively with increasing geomagnetic activity and that a significant portion of the O+ ions is transported directly from the ionosphere to the near ]Earth region rather than through the distant tail.
    Keywords: Geophysics
    Type: Journal of Geophysical Research; 116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-08-28
    Description: The initial signatures of tail field reconfiguration observed in the near-earth magnetotail are examined using data obtained by the AMPTE/CCE magnetometer and the Medium Energy Particle Analyzer. It is found that the tail reconfiguration events could be classified as belonging to two types, Type I and Type II. In Type I events, a current disruption is immersed in a hot plasma region expanding from inward (earthward/equatorward) of the spacecraft; consequently, the spacecraft is immersed in a hot plasma region expanding from inward. The Type II reconfiguration event is characterized by a distinctive interval (explosive growth phase) just prior to the local commencement of tail phase.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; A12; p. 19,311-19,324.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-08-28
    Description: The spatial structure of dayside large-scale field-aligned current (FAC) systems is examined by using Viking and Defense Meteorological Satellite Program-F7 (DMSP-F7) data. We focus on four events in which the satellites simultaneously observed postnoon and prenoon three FAC systems: the region 2, the region 1, and the mantle (referred to as midday region O) systems, from equatorward to poleward. These events provide the most solid evidence to date that the midday region O system is a separate and unique FAC system, and is not an extension of the region 1 system from other local times. The events are examined comprehensively by making use of a mulit-instrumental data set, which includes magnetic field, particle flux, electric field, auroral UV image data from the satellites, and the Sondrestrom convection data. The results are summarized as follows: (1) Region 2 currents flow mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPD) at their poleward edge. (2) The region 1 system is located in the core part of the auroral oval and is confined in a relatively narrow range in latitude which includes the convection reversal. The low-latitude boundary layer, possibly including the outer part of the plasma sheet, and the external cusp are the major source regions of dayside region 1 currents. (2) Midday region O currents flow on open field lines and are collocated with the shear of antisunward convection flows with velocites decreasing poleward. On the basis of these results we support the view that both prenoon and postnoon current systems consist of the three-sheet structure when the disctortion ofthe convection pattern associated with interplanetary magnetic field (IMF) B(sub Y) is small and both morningside and eveningside convection cells are crescent-shaped. We also propose that the midday region O and a part of the region 1 systems are closely coupled to the same source.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A1; p. 119-136
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-28
    Description: A system of four current sheets of large-scale field-aligned currents (FACs) was discovered in the data set of simultaneous Viking and Defense Meteorological Satellire Program-F7 (DMSP-F7) crossing of the dayside high-latitude region. This paper reports four examples of this system that were observed in the prenoon sector. The flow polarities of FACs are upward, downward, upward, and downward, from equatorward to poleward. The lowest-latitude upward current is flowing mostly in the central plasma sheet (CPS) precipitation region, often overlapping with the boundary plasma sheet (BPS) at its poleward edge, andis interpreted as a region 2 current. The pair of downward and upward FACs in the middle of te structure are collocated with structured electron precipitation. The precipitation of high-energy (greater than 1 keV) electrons is more intense in the lower-latitude downward current sheet. The highest-latitude downward flowing current sheet is located in a weak, low-energy particle precipitation region, suggesting that this current is flowing on open field lines. Simulaneous observations in the postnoon local time sector reveal the standard three-sheet structure of FACs, sometimes described as region 2, region 1, and mantle (referred to the midday region O) currents. A high correlation was found between the occurrence of the four FAC sheet structure and negative interplanetary magnetic field (IMF) B(sub Y). We discuss the FAC structurein terms of three types of convection cells: the merging, viscous, andlobe cells. During strongly negative IMF B(sub Y), two convection reversals exist in the prenoon sector; one is inside the viscous cell, and the other is between the viscous cell and the lobe cell. This structure of convection flow is supported by the Viking electric field and auroral UV image data. Based on the convection pattern, the four FAC sheet structure is interpreted as the latitude overlap of midday and morning FAC systems. We suggest that the for-current sheet structure is common in a certain prenoon localtime sector during strongly negative IMF B(sub Y).
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 100; A1; p. 137-153
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...