ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (12)
  • 1
    Publication Date: 2011-08-19
    Description: Five examples of solar flares observed with the 17-GHz interferometer at Nobeyama in which a secondary microwave burst occurred at a distance of 100,000 km to 1,000,000 km from the primary flare site are presented. The secondary microwave burst in all five cases had a similar time profile to the primary burst with a delay of 2 to 25 s. The velocity of a triggering agent inferred from this delay and spatial separation is 10,000 km to 100,000 km/s. The intensity of the secondary burst was a factor of 3 to 25 smaller than that of the primary burst in all events except for one case in which it was a factor of 2 larger. The polarization degree of the secondary burst at 17 GHz was 35 percent, significantly higher than the average value for typical impulsive bursts. Two of the events were accompanied by meterwave type III/V bursts located high in the corona between the primary and secondary sites. For two of the other events, X-ray images of the secondary source were obtained with the hard-X-ray imaging spectrometer on the Solar Maximum Mission. These observations strongly suggest that the distant microwave bursts were produced by electrons with energies of 10 keV to 100 keV which were channeled along a huge loop from the main flare site to the remote location.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 288; 806-819
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-08-31
    Description: It was investigated whether microwave source positions change while the total fluxes of hard X-rays and microwaves show remarkable rapid fluctuations of the order of seconds. The position measurements were made in one dimension (east-west direction) with the 17 GHz interferometer at Nobeyama. Position changes greater than a few arc seconds can be detected. The result shows that significant position changes are found for five of seven bursts but that no position changes greater than 3 arc seconds are found for the remaining two bursts.
    Keywords: SOLAR PHYSICS
    Type: NASA. Goddard Space Flight Center Rapid Fluctuations in Solar Flares; p 147-153
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Double sub-peak structures in the quasi periodic oscillations in the time profiles of solar flares in 1980 and 1982 are discussed. Computer simulations of the coalescence instability of two current loops agree with observations of the (widely differing) flares. The simultaneous accelerations of electrons and ions, and the double sub-peak structure in quasi periodic pulses are well explained. The double sub-peak structure is more pronounced when the currents in the two loops are sufficient for fast coalescence to occur. This corresponds to the 1980 flare. When the currents are insufficient for fast coalescence, the double sub-peak structure is less pronounced, as in the 1982 flare. Observations suggest the collision of the two microwave sources for the 1982 event. It is argued that this mechanism is a plausible particle acceleration mechanism in solar flares.
    Keywords: SOLAR PHYSICS
    Type: ESA Plasma Astrophys.; p 193-196
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: The nonlinear coalescence instability of current carrying solar loops can explain many of the characteristics of the solar flares such as their impulsive nature, heating and high energy particle acceleration, amplitude oscillations of electromagnetic emission as well as the characteristics of 2-D microwave images obtained during a solar flare. The physical characteristics of the explosive coalescence of currents are presented in detail through computer simulation and theory. Canonical characteristics of the explosive coalescence are: (1) a large amount of impulsive increase of kinetic energies of electrons and ions; (2) simultaneous heating and acceleration of electrons and ions in high and low energy spectra; (3) ensuing quasi-periodic amplitude oscillations in fields and particle quantities; and (4) the double peak (or triple peak) structure in these profiles, participate in the coalescence process, yielding varieties of phenomena.
    Keywords: SOLAR PHYSICS
    Type: NASA. Goddard Space Flight Center Rapid Fluctuations in Solar Flares; p 393-434
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Five examples of solar flares observed with the 17-GHz interferometer at Nobeyama in which a secondary microwave burst occurred at a distance of 100,000 km to 1,000,000 km from the primary flare site are presented. The secondary microwave burst in all five cases had a similar time profile to the primary burst with a delay of 2 to 25 s. The velocity of a triggering agent inferred from this delay and spatial separation is 10,000 km to 100,000 km/s. The intensity of the secondary burst was a factor of 3 to 25 smaller than that of the primary burst in all events except for one case in which it was a factor of 2 larger. The polarization degree of the secondary burst at 17 GHz was 35%, significantly higher than the average value for typical impulsive bursts. Two of the events were accompanied by meterwave type III/V bursts located high in the corona between the primary and secondary sites. For two of the other events, X-ray images of he secondary source were obtained with the hard-X-ray imaging spectrometer on the Solar Maximum Mission. These observations strongly suggest that the distant microwave bursts were produced by electrons with energies of 10 keV to 100 keV which were channeled along a huge loop from the main flare site to the remote location.
    Keywords: SOLAR PHYSICS
    Type: NASA-TM-86140 , NAS 1.15:86140
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Latitudinal distributions of NO, NO(y), O3, CO, CH3I, and H2O mixing ratios at 8.9-12 km were obtained between 30deg N and 1deg S by DC-8 aircraft measurements made in February 1994 during Pacific Exploratory Mission-West B (PEM-West B). Very low NO(y), mixing ratios with a median value of 51 parts per trillion by volume (pptv) were observed at 9.5-12 km at 1deg N-14deg N during two flights made within 3 days. A very low median O3 mixing ratio of 19 parts per billion by volume (ppbv) and high mixing ratios of H2O and CH3I were simultaneously observed, suggesting that the low NO(y), values were probably due to the convective transport of air from the tropical marine boundary layer to this altitude. The median NO(y)/O3 ratio being a factor of 2 smaller than in the air masses in the tropical marine boundary layer might suggest the possibility that the heterogeneous removal of HNO3 during convective transport further reduced NO(y) levels. In addition to the measurements between 9.5 and 12 km, low values of NO(y) and O3 were observed between 4 and 12 km at 1deg N. Divergent wind fields at 200 and 1000 hPa and infrared (IR) cloud images show that there was large scale convection (greater than 1000 km x 1000 km) in the northeast of New Guinea Island centered around Odeg S and 150deg E as part of systematic convective activity of the Intertropical Convergence Zone (ITCZ) and the South Pacific Convergence Zone (SPCZ). This type of large scale convection could have transported air with low levels of NO(y) and O3 to the middle and upper troposphere over a wide area in the tropics. On the other hand, NO mixing ratios of 50-200 pptv and high NQ,/NOY ratios of 0.4-0.6 were observed at 9.5 km between 4deg S and 10deg S. High H2O Mixing ratios of 600-1200 parts per million by volume (ppmv) and low CO mixing ratios of 65 ppbv observed in the air mass indicated that the high NO values were probably due to NO production by lightning. Satellite observations showed relatively frequent lightning flashes over the New Guinea Island for 3 days prior to the aircraft measurements. These results are considered to be consistent with the idea that, in general, marine convection is not accompanied by lightning activity, whereas convection over land is. Because of the large areal extent of the influences from these processes, the convective transport of low NO(y) air and NO production by lightning should play critical roles in controlling the abundance of reactive nitrogen in the equatorial region.
    Keywords: Environment Pollution
    Type: Paper-97JD02073 , Journal of Geophysical Research (ISSN 0148-0227); 102; D23; 28,367-28,384
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Measurements of NO, NO(y), O3, and CO were made during NASA's Global Tropospheric Experiment/Pacific Exploratory Mission-West B (GTE/PEM-West B) carried out over the western Pacific in February and March 1994. NO(x) was calculated from NO using a photostationary state model ((NO(x)(sub mc)). Correlations between these species are presented, and some insights into the sources of NO(x) and NO(y) are described. The boundaries between the lower, middle, and upper troposphere have been defined at potential temperatures of 311 K and 328 K, which correspond to the geometric altitudes of about 5 and 9 km at 30degN. Enhancements in the mixing ratios of NO(y) and CO were observed in the lower and middle troposphere. A positive correlation was found between these two species suggesting that the high NO(y) values were due to anthropogenic emissions over the continental surface. On the other hand, O3 increased little with increase in CO. As a result, NO(y)/O3 ratios were higher in air more influenced by pollution. NO(y), values in 55 and 28% of the air masses sampled in the lower and middle troposphere, respectively, were higher than the clean free tropospheric NO(y)-O3 range when O3 values simultaneously observed were used. High (NOx)mc/NOy ratios between 0.15 and 0.3 were found in the boundary layer with relatively low mixing ratios of CO and NOy during the three flights. These air masses were transported from a higher altitude (approximately 5 km) and a higher latitude (approximately 50degN) within a few days. The peroxyacetyl nitrate (PAN)/NO(y) ratios were generally high (approximately 0.4) in these air masses, and the thermal decomposition of PAN was a probable source of NO(x). In the middle troposphere the (NO(x))mc mixing ratio did not generally increase with NO(y) or CO, suggesting that the transport of air masses affected by anthropogenic emissions did not increase the NO(x) level significantly. In the upper troposphere, very minor effects from the continental surface sources were seen in the CO mixing ratio. By contrast, NO(y) values in 33% of the air masses were higher than those expected when stratospheric air intrusion is assumed to be a single source of NO(y) based on NO(y)-O3 correlation analyses. This result suggests significant free tropospheric NO(y) sources, namely exhaust from the aircraft and NO production by lightning activity. In fact, spikes in the (NO(x))(sub m)c mixing ratios were observed near the aircraft corridor south of Tokyo at an altitude of 10 km. These two free tropospheric NO(x) sources were considered to be important in determining the levels of the upper tropospheric NO(x) and NO(y) during PEM-West B.
    Keywords: Environment Pollution
    Type: Paper-97JD02085 , Journal of Geophysical Research (ISSN 0148-0227); 102; D23; 28,385-28,404
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: A solar occultation sensor, the Improved Limb Atmospheric Spectrometer (ILAS)-II, measured 5890 vertical profiles of ozone concentrations in the stratosphere and lower mesosphere and of other species from January to October 2003. The measurement latitude coverage was 54-71degN and 64-88degS, which is similar to the coverage of ILAS (November 1996 to June 1997). One purpose of the ILAS-II measurements was to continue such high-latitude measurements of ozone and its related chemical species in order to help accurately determine their trends. The present paper assesses the quality of ozone data in the version 1.4 retrieval algorithm, through comparisons with results obtained from comprehensive ozonesonde measurements and four satellite-borne solar occultation sensors. In the Northern Hemisphere (NH), the ILAS-II ozone data agree with the other data within +/-10% (in terms of the absolute difference divided by its mean value) at altitudes between 11 and 40 km, with the median coincident ILAS-II profiles being systematically up to 10% higher below 20 km and up to 10% lower between 21 and 40 km after screening possible suspicious retrievals. Above 41 km, the negative bias between the NH ILAS-II ozone data and the other data increases with increasing altitude and reaches 30% at 61-65 km. In the Southern Hemisphere, the ILAS-II ozone data agree with the other data within 10% in the altitude range of 11-60 km, with the median coincident profiles being on average up to 10% higher below 20 km and up to 10% lower above 20 km.
    Keywords: Meteorology and Climatology
    Type: Journal of Geophysical Research; 111
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: The Improved Limb Atmospheric Spectrometer (ILAS) II on board the Advanced Earth Observing Satellite (ADEOS) II observed stratospheric aerosol in visible/near-infrared/infrared spectra over high latitudes in the Northern and Southern Hemispheres. Observations were taken intermittently from January to March, and continuously from April through October, 2003. We assessed the data quality of ILAS-II version 1.4 aerosol extinction coefficients at 780 nm from comparisons with the Stratospheric Aerosol and Gas Experiment (SAGE) II, SAGE III, and the Polar Ozone and Aerosol Measurement (POAM) III aerosol data. At heights below 20 km in the Northern Hemisphere, aerosol extinction coefficients from ILAS-II agreed with those from SAGE II and SAGE III within 10%, and with those from POAM III within 15%. From 20 to 26 km, ILAS-II aerosol extinction coefficients were smaller than extinction coefficients from the other sensors; differences between ILAS-II and SAGE II ranged from 10% at 20 km to 34% at 26 km. ILAS-II aerosol extinction coefficients from 20 to 25 km in February over the Southern Hemisphere had a negative bias (12-66%) relative to SAGE II aerosol data. The bias increased with increasing altitude. Comparisons between ILAS-II and POAM III aerosol extinction coefficients from January to May in the Southern Hemisphere (defined as the non-Polar Stratospheric Cloud (PSC) season ) yielded qualitatively similar results. From June to October (defined as the PSC season ), aerosol extinction coefficients from ILAS-II were smaller than those from POAM III above 17 km, as in the case of the non-PSC season; however, ILAS-II and POAM III aerosol data were within 15% of each other from 12 to 17 km.
    Keywords: Earth Resources and Remote Sensing
    Type: Journal of Geophysical Research; 111; 1-10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: A computer simulation and theoretical study of the physical characteristics of the explosive coalescence of current-carrying loops is presented. Characteristics of the explosive coalescence include a large impulsive increase of the kinetic energies of electrons and ions, the simultaneous heating and acceleration of electrons and ions in high and low energy ranges, and a break in the energy spectra of electrons and ions. A characteristic double subpeak structure is found in the quasi-periodic oscillations found in the time profiles of the solar flares of June 7, 1980 and November 26, 1982 which can be explained in terms of the coalescence instability of two current loops.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 321; 1031-104
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...