ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-06
    Description: The Antarctic ozone hole demonstrates large-scale, man-made affects on our atmosphere. Surface observations now show that human produced ozone depleting substances (ODSs) are declining. The ozone hole should soon start to diminish because of this decline. Herein we demonstrate an ozone hole parametric model. This model is based upon: 1) a new algorithm for estimating C1 and Br levels over Antarctica and 2) late-spring Antarctic stratospheric temperatures. This parametric model explains 95% of the ozone hole area s variance. We use future ODS levels to predict ozone hole recovery. Full recovery to 1980 levels will occur in approximately 2068. The ozone hole area will very slowly decline over the next 2 decades. Detection of a statistically significant decrease of area will not occur until approximately 2024. We further show that nominal Antarctic stratospheric greenhouse gas forced temperature change should have a small impact on the ozone hole.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-11-30
    Description: An accurate estimate of global hydroxyl radical (OH) abundance is important for projections of air quality, climate, and stratospheric ozone recovery. As the atmospheric mixing ratios of methyl chloroform (CH3CCl3) (MCF), the commonly used OH reference gas, approaches zero, it is important to find alternative approaches to infer atmospheric OH abundance and variability. The lack of global bottom-up emission inventories is the primary obstacle in choosing a MCF alternative. We illustrate that global emissions of long-lived trace gases can be inferred from their observed mixing ratio differences between the Northern Hemisphere (NH) and Southern Hemisphere (SH), given realistic estimates of their NH-SH exchange time, the emission partitioning between the two hemispheres, and the NH versus SH OH abundance ratio. Using the observed long-term trend and emissions derived from the measured hemispheric gradient, the combination of HFC-32 (CH2F2), HFC-134a (CH2FCF3, HFC-152a (CH3CHF2), and HCFC-22 (CHClF2), instead of a single gas, will be useful as a MCF alternative to infer global and hemispheric OH abundance and trace gas lifetimes. The primary assumption on which this multispecies approach relies is that the OH lifetimes can be estimated by scaling the thermal reaction rates of a reference gas at 272 K on global and hemispheric scales. Thus, the derived hemispheric and global OH estimates are forced to reconcile the observed trends and gradient for all four compounds simultaneously. However, currently, observations of these gases from the surface networks do not provide more accurate OH abundance estimate than that from MCF.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN53388 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 122; 21; 11,914-11,933
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Carbon tetrachloride (CCl4) is an ozone-depleting substance, which is controlled by the Montreal Protocol and for which the atmospheric abundance is decreasing. However, the current observed rate of this decrease is known to be slower than expected based on reported CCl4 emissions and its estimated overall atmospheric lifetime. Here we use a three-dimensional (3-D) chemical transport model to investigate the impact on its predicted decay of uncertainties in the rates at which CCl4 is removed from the atmosphere by photolysis, by ocean uptake and by degradation in soils. The largest sink is atmospheric photolysis (74% of total), but a reported 10% uncertainty in its combined photolysis cross section and quantum yield has only a modest impact on the modelled rate of CCl4 decay. This is partly due to the limiting effect of the rate of transport of CCl4 from the main tropospheric reservoir to the stratosphere, where photolytic loss occurs. The model suggests large interannual variability in the magnitude of this stratospheric photolysis sink caused by variations in transport. The impact of uncertainty in the minor soil sink (9%of total) is also relatively small. In contrast, the model shows that uncertainty in ocean loss (17%of total) has the largest impact on modelled CCl4 decay due to its sizeable contribution to CCl4 loss and large lifetime uncertainty range (147 to 241 years). With an assumed CCl4 emission rate of 39 Gg year(exp -1), the reference simulation with the best estimate of loss processes still underestimates the observed CCl4 (overestimates the decay) over the past 2 decades but to a smaller extent than previous studies. Changes to the rate of CCl4 loss processes, in line with known uncertainties, could bring the model into agreement with in situ surface and remote-sensing measurements, as could an increase in emissions to around 47 Gg year(exp -1). Further progress in constraining the CCl4 budget is partly limited by systematic biases between observational datasets. For example, surface observations from the National Oceanic and Atmospheric Administration (NOAA) network are larger than from the Advanced Global Atmospheric Gases Experiment (AGAGE) network but have shown a steeper decreasing trend over the past 2 decades. These differences imply a difference in emissions which is significant relative to uncertainties in the magnitudes of the CCl4 sinks.
    Keywords: Environment Pollution
    Type: GSFC-E-DAA-TN38408 , Atmospheric Chemistry and Physics; 16; 24; 15741-15754
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-05
    Description: The Montreal Protocol (MP) controls the production and consumption of carbon tetrachloride (CCl4 or CTC) and other ozone-depleting substances (ODSs) for emissive uses. CCl4 is a major ODS, accounting for about 12% of the globally averaged inorganic chlorine and bromine in the stratosphere, compared to 14% for CFC-12 in 2012. In spite of the MP controls, there are large ongoing emissions of CCl4 into the atmosphere. Estimates of emissions from various techniques ought to yield similar numbers. However, the recent WMO/UNEP Scientific Assessment of Ozone Depletion estimated a 2007-2012 CCl4 bottom-up emission of 1-4 Gg/year (1-4 kilotonnes/year), based on country-by-country reports to UNEP, and a global top-down emissions estimate of 57 Gg/ year, based on atmospheric measurements. This 54 Gg/year difference has not been explained. In order to assess the current knowledge on global CCl4 sources and sinks, stakeholders from industrial, governmental, and the scientific communities came together at the Solving the Mystery of Carbon Tetrachloride workshop, which was held from 4-6 October 2015 at Empa in Dbendorf, Switzerland. During this workshop, several new findings were brought forward by the participants on CCl4 emissions and related science.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN34664
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-12-17
    Description: Current climate models disagree on how much carbon dioxide land ecosystems take up for photosynthesis. Tracking the stronger carbonyl sulfide signal could help.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    World Meteorological Organization
    In:  World Meteorological Organization, Geneva, Switzerland, 84 pp. ISBN 978-9966-076-02-1
    Publication Date: 2016-11-17
    Type: Book , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-02-08
    Description: For the past decade, observations of carbonyl sulfide (OCS or COS) have been investigated as a proxy for carbon uptake by plants. OCS is destroyed by enzymes that interact with CO2 during photosynthesis, namely carbonic anhydrase (CA) and RuBisCO, where CA is the more important one. The majority of sources of OCS to the atmosphere are geographically separated from this large plant sink, whereas the sources and sinks of CO2 are co-located in ecosystems. The drawdown of OCS can therefore be related to the uptake of CO2 without the added complication of co-located emissions comparable in magnitude. Here we review the state of our understanding of the global OCS cycle and its applications to ecosystem carbon cycle science. OCS uptake is correlated well to plant carbon uptake, especially at the regional scale. OCS can be used in conjunction with other independent measures of ecosystem function, like solar-induced fluorescence and carbon and water isotope studies. More work needs to be done to generate global coverage for OCS observations and to link this powerful atmospheric tracer to systems where fundamental questions concerning the carbon and water cycle remain.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-01-31
    Description: We present consistent annual mean atmospheric histories and growth rates for the mainly anthropogenic halogenated compounds HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116, which are all potentially useful oceanic transient tracers (tracers of water transport within the ocean), for the Northern and Southern Hemisphere with the aim of providing input histories of these compounds for the equilibrium between the atmosphere and surface ocean. We use observations of these halogenated compounds made by the Advanced Global Atmospheric Gases Experiment (AGAGE), the Scripps Institution of Oceanography (SIO), the Commonwealth Scientific and Industrial Research Organization (CSIRO), the National Oceanic and Atmospheric Administration (NOAA) and the University of East Anglia (UEA). Prior to the direct observational record, we use archived air measurements, firn air measurements and published model calculations to estimate the atmospheric mole fraction histories. The results show that the atmospheric mole fractions for each species, except HCFC-141b and HCFC-142b, have been increasing since they were initially produced. Recently, the atmospheric growth rates have been decreasing for the HCFCs (HCFC-22, HCFC-141b and HCFC-142b), increasing for the HFCs (HFC-134a, HFC-125, HFC-23) and stable with little fluctuation for the PFCs (PFC-14 and PFC-116) investigated here. The atmospheric histories (source functions) and natural background mole fractions show that HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125 and HFC-23 have the potential to be oceanic transient tracers for the next few decades only because of the recently imposed bans on production and consumption. When the atmospheric histories of the compounds are not monotonically changing, the equilibrium atmospheric mole fraction (and ultimately the age associated with that mole fraction) calculated from their concentration in the ocean is not unique, reducing their potential as transient tracers. Moreover, HFCs have potential to be oceanic transient tracers for a longer period in the future than HCFCs as the growth rates of HFCs are increasing and those of HCFCs are decreasing in the background atmosphere. PFC-14 and PFC-116, however, have the potential to be tracers for longer periods into the future due to their extremely long lifetimes, steady atmospheric growth rates and no explicit ban on their emissions. In this work, we also derive solubility functions for HCFC-22, HCFC-141b, HCFC-142b, HFC-134a, HFC-125, HFC-23, PFC-14 and PFC-116 in water and seawater to facilitate their use as oceanic transient tracers. These functions are based on the Clark–Glew–Weiss (CGW) water solubility function fit and salting-out coefficients estimated by the poly-parameter linear free-energy relationships (pp-LFERs). Here we also provide three methods of seawater solubility estimation for more compounds. Even though our intention is for application in oceanic research, the work described in this paper is potentially useful for tracer studies in a wide range of natural waters, including freshwater and saline lakes, and, for the more stable compounds, groundwaters.
    Type: Article , PeerReviewed
    Format: text
    Format: archive
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...