ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-07-13
    Description: Since landing in Gale Crater on August 5, 2012, the Curiosity rover has driven 450 m east, descending approximately 15 m in elevation from the Bradbury landing site to Yellowknife Bay. Outcrop exposure along this drive has been discontinuous, but isolated outcrops may represent windows into underlying inplace stratigraphy. This study presents an inventory of outcrops targeted by Curiosity (Figs. 1-2), grouped by lithological properties observed in Mastcam and Navcam imagery. Outcrop locations are placed in a stratigraphic context using orbital imagery and first principles of stratigraphy. The stratigraphic models presented here represent an essential first step in understanding the relative age relationships of lithological units encountered at the Curiosity landing site. Such observations will provide crucial context for assessing habitability potential of ancient Gale crater environments and organic matter preservation.
    Keywords: Geophysics; Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN7845 , Lunar and Planetary Science Conference; Mar 18, 2013 - Mar 22, 2013; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We determined radiogenic and cosmogenic noble gases in a mudstone on the floor of Gale Crater. A K-Ar age of 4.21 +/- 0.35 billion years represents a mixture of detrital and authigenic components and confirms the expected antiquity of rocks comprising the crater rim. Cosmic-ray-produced 3He, 21Ne, and 36Ar yield concordant surface exposure ages of 78 T 30 million years. Surface exposure occurred mainly in the present geomorphic setting rather than during primary erosion and transport. Our observations are consistent with mudstone deposition shortly after the Gale impact or possibly in a later event of rapid erosion and deposition. The mudstone remained buried until recent exposure by wind-driven scarp retreat. Sedimentary rocks exposed by this mechanism may thus offer the best potential for organic biomarker preservation against destruction by cosmic radiation.
    Keywords: Lunar and Planetary Science and Exploration; Geosciences (General)
    Type: GSFC-E-DAA-TN21533 , Science; 343; 6169
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-10
    Description: CIPW norms of lunar mare basalts are anomalously low in pyroxene. A modified norm calculation allowing higher Ca, Ti, Al, Cr, and Mn in di' and hy' obtains closer matches between normative and modal mineralogy.
    Keywords: Lunar and Planetary Science and Exploration
    Type: Lunar and Planetary Science XXXI; LPI-Contrib-1000
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Jezero is a approximately 45 km diameter impact crater located in the Nili Fossae region of Mars. Jezero is an outstanding site to address key questions of ancient Mars climate, habitability, and volcanic history because: (a) It hosted an open-basin lake during the era of valley network formation [1,2], which ceased at approximately the Noachian-Hesperian boundary [3]. (b) It contains two delta deposits [1,4] with Fe/Mg-smectite and Mg-carbonate sediment [4-7] (the only exposure of lacus-trine shoreline carbonates seen so far on Mars). (c) The depositional environment and mineral assemblage of the delta are promising for the concentration and preservation of organic matter [5,8]. (d) The diverse geologic units in Jezero are in clear stratigraphic context [7]. The Jezero paleolake system has been thoroughly investigated at a variety of scales, including work on: the mineralogy of the delta deposits [4-6] and watershed [7], as well as the morphology and sedimentology of the basin [9] and delta deposits [1,4]. The geologic context of Jezero is also well-studied given the broad suite of alteration minerals exposed in the ancient stratigraphies of the Nili Fossae region [e.g., 6,10-13]. Here we present an overview of the units accessible for exploration in the Jezero basin, including questions and hypotheses that can be tested through analysis in situ and of returned samples. This is particularly timely given the upcoming Mars 2020 mission, for which Jezero is one of the final eight landing sites [14]. Primary science objectives for Mars 2020 are to: (1) characterize the geologic history of a site with "evidence of an astrobiologically-relevant ancient environment and geologic diversity"; (2) assess the habitability and "potential evidence of past life" in units with "high biosignature preservation potential"; and (3) cache scientifically compelling samples for potential return to Earth [15].
    Keywords: Lunar and Planetary Science and Exploration
    Type: MSFC-E-DAA-TN38540 , Lunar and Planetary Science Conference; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...