ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) has determined the dipole spectrum of the cosmic microwave background radiation (CMBR) from 2 to 20/cm. For each frequency the signal is decomposed by fitting to a monopole, a dipole, and a Galactic template for approximately 60% of the sky. The overall dipole spectrum fits the derivative of a Planck function with an amplitude of 3.343 +/- 0.016 mK (95% confidence level), a temperature of 2.714 +/- 0.022 K (95% confidence level), and an rms deviation of 6 x 10(exp -9) ergs/sq cm/s/sr cm limited by a detector and cosmic-ray noise. The monopole temperature is consistent with that determined by direct measurement in the accompanying article by Mather et al.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 445-449
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The first two years of Cosmic Background Explorer (COBE) Differential Microwave Radiometers (DMR) observations of the cosmic microwave background (CMB) anisotropy are analyzed and compared with our previously published first year results. The results are consistent, but the addition of the second year of data increases the precision and accuracy detected CMB temperature fluctuations. The 2 yr 53 GHz data are characterized by rms temperature fluctuations of (delta-T)(sub rms) (7 deg) = 44 +/- 7 micro-K and (delta-T)(sub rms) (10 deg) = 30.5 +/- 2.7 micro-K at 7 deg and 10 deg angular resolution, respectively. The 53 x 90 GHz cross-correlation amplitude at zero lag is C(0)(sup 1/2) = 36 +/- 5 micro-K (68% CL) for the unsmoothed (7 deg resolution) DMR data. We perform a likelihood analysis of the cross-correlation function, with Monte Carlo simulations to infer biases of the method, for a power-law model of initial density fluctuations, P(k) proportional to R(exp n). The Monte Carlo simulations indicate that derived estimates of n are biased by +0.11 +/- 0.01, while the subset of simulations with a low quadrupole (as observed) indicate a bias of +0.31+/- 0.04. Derived values for 68% confidence intervals are given corrected (and not corrected) for our estimated biases. Including the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 14.3(sup + 5.2 sub -3.3) micro-K (12.8(sup + 5.2 sub -3.3) micro-K0 with a spectral index n = 1.42(sup + 0.49 sub -0.55)(n = 1.53(sup + 0.49 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.2 +/- 11.5 micro-K (17.4 +/- 1.5 micro-K). The marginal likelihood of n is 1.42 +/- 0.37 (1.53 +/- 0.37). Excluding the quadrupole anisotropy, the most likely quadrupole-normalized amplitude is Q(sub rms-PS) = 17.4(sup + 7.5 sub -5.2) micro-K (15.8(sup + 7.5 sub -5.2) micro-K) with a spectral index n = 1.11(sup + 0.60 sub -0.55) (n = 1.22(sup + 0.60 sub -0.55). With n fixed to 1.0 the most likely amplitude is 18.6 +/- 1.6 micro-K (18.2 +/- 1.6 micro-K). The marginal likelihood of n is 1.11 +/- 0.40 (1.22 +/- 0.40). Our best estimate of the dipole from the 2 yr DMR data is 3.363 +/- 0.024 mK toward Galactic coordinates (l, b) = (264.4 deg +/- 0.2 deg, 48.1 deg +/- 0.4 deg), and our best estimate of the rms quadrupole amplitude in our sky is 6 +/- 3 micro-K (68% CL).
    Keywords: ASTRONOMY
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 436; 2; p. 423-442
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: The cosmic microwave background radiation (CMBR) has a blackbody spectrum within 3.4 x 10(exp -8) ergs/sq cm/s/sr cm over the frequency range from 2 to 20/cm (5-0.5 mm). These measurements, derived from the Far-Infrared Absolute Spectrophotomer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite, imply stringent limits on energy release in the early universe after t approximately 1 year and redshift z approximately 3 x 10(exp 6). The deviations are less than 0.30% of the peak brightness, with an rms value of 0.01%, and the dimensionless cosmological distortion parameters are limited to the absolute value of y is less than 2.5 x 10(exp -5) and the absolute value of mu is less than 3.3 x 10(exp -4) (95% confidence level). The temperature of the CMBR is 2.726 +/- 0.010 K (95% confidence level systematic).
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 439-444
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-24
    Description: The Far-Infrared Absolute Spectrophotometer (FIRAS) instrument on the Cosmic Background Explorer (COBE) satellite was designed to accurately measure the spectrum of the cosmic microwave background radiation (CMBR) in the frequency range 1-95/cm with an angular resolution of 7 deg. We describe the calibration of this instrument, including the method of obtaining calibration data, reduction of data, the instrument model, fitting the model to the calibration data, and application of the resulting model solution to sky observations. The instrument model fits well for calibration data that resemble sky condition. The method of propagating detector noise through the calibration process to yield a covariance matrix of the calibrated sky data is described. The final uncertainties are variable both in frequency and position, but for a typical calibrated sky 2.6 deg square pixel and 0.7/cm spectral element the random detector noise limit is of order of a few times 10(exp -7) ergs/sq cm/s/sr cm for 2-20/cm, and the difference between the sky and the best-fit cosmic blackbody can be measured with a gain uncertainty of less than 3%.
    Keywords: ASTROPHYSICS
    Type: The Astrophysical Journal, Part 1 (ISSN 0004-637X); 420; 2; p. 457-473
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: A Monte Carlo calculation of the quark-liberating phase transition in lattice quantum chromodynamics is presented. The transition temperature as a function of the lattice coupling g does not scale according to the perturbative beta function for 6/g-squared less than 6.1. Finite-size scaling is used in analyzing the properties of the lattice system near the transition point.
    Keywords: NUCLEAR AND HIGH-ENERGY PHYSICS
    Type: Physical Review Letters (ISSN 0031-9007); 54; 87-91
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-18
    Description: A new type of bolometer detector for the millimeter and submillimeter spectral range is described. The bolometer is constructed of silicon using integrated circuit fabrication techniques. Ion implantation is used to give controlled resistance vs temperature properties as well as extremely low 1/f noise contacts. The devices have been tested between 4.2 and 0.3 K. The best electrical NEP measured is 4 x 10 to the -16th W/Hz to the 1/2 at 0.35 K between 1- and 10-Hz modulation frequency. This device had a detecting area of 0.25 sq cm and a time constant of 20 msec at a bath temperature of 0.35 K.
    Keywords: INSTRUMENTATION AND PHOTOGRAPHY
    Type: Applied Optics (ISSN 0003-6935); 23; 910-914
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018-06-12
    Description: We describe the calibration and data processing methods used to generate full-sky maps of the cosmic microwave background (CMB) from the first year of Wilkinson Microwave Anisotropy Probe (WMAP) observations. Detailed limits on residual systematic errors are assigned based largely on analyses of the flight data supplemented, where necessary, with results from ground tests. The data are calibrated in flight using the dipole modulation of the CMB due to the observatory's motion around the Sun. This constitutes a full-beam calibration source. An iterative algorithm simultaneously fits the time-ordered data to obtain calibration parameters and pixelized sky map temperatures. The noise properties are determined by analyzing the time-ordered data with this sky signal estimate subtracted. Based on this, we apply a pre-whitening filter to the time-ordered data to remove a low level of l/f noise. We infer and correct for a small (approx. 1 %) transmission imbalance between the two sky inputs to each differential radiometer, and we subtract a small sidelobe correction from the 23 GHz (K band) map prior to further analysis. No other systematic error corrections are applied to the data. Calibration and baseline artifacts, including the response to environmental perturbations, are negligible. Systematic uncertainties are comparable to statistical uncertainties in the characterization of the beam response. Both are accounted for in the covariance matrix of the window function and are propagated to uncertainties in the final power spectrum. We characterize the combined upper limits to residual systematic uncertainties through the pixel covariance matrix.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-06
    Description: We present the list of point sources found in the WMAP 5-year maps. The technique used in the first-year and three-year analysis now finds 390 point sources, and the five-year source catalog is complete for regions of the sky away from the galactic plane to a 2 Jy limit, with SNR greater than 4.7 in all bands in the least covered parts of the sky. The noise at high frequencies is still mainly radiometer noise, but at low frequencies the CMB anisotropy is the largest uncertainty. A separate search of CMB-free V-W maps finds 99 sources of which all but one can be identified with known radio sources. The sources seen by WMAP are not strongly polarized. Many of the WMAP sources show significant variability from year to year, with more than a 2:l range between the minimum and maximum fluxes.
    Keywords: Astronomy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2018-06-06
    Description: The Wilkinson Microwave Anisotropy Probe (WMAP) has mapped the full sky in Stokes I, Q, and U parameters at frequencies 23, 33, 41, 61, and 94 GHz. We detect correlations between the temperature and polarization maps significant at more than 10 standard deviations. The correlations are inconsistent with instrument noise and are significantly larger than the upper limits established for potential systematic errors. The correlations are present in all WAMP frequency bands with similar amplitude from 23 to 94 GHz, and are consistent with a superposition of a CMB signal with a weak foreground. The fitted CMB component is robust against different data combinations and fitting techniques. On small angular scales (theta less than 5 deg), the WMAP data show the temperature-polarization correlation expected from adiabatic perturbations in the temperature power spectrum. The data for l greater than 20 agree well with the signal predicted solely from the temperature power spectra, with no additional free parameters. We detect excess power on large angular scales (theta greater than 10 deg) compared to predictions based on the temperature power spectra alone. The excess power is well described by reionization at redshift 11 is less than z(sub r) is less than 30 at 95% confidence, depending on the ionization history. A model-independent fit to reionization optical depth yields results consistent with the best-fit ACDM model, with best fit value t = 0.17 +/- 0.04 at 68% confidence, including systematic and foreground uncertainties. This value is larger than expected given the detection of a Gunn-Peterson trough in the absorption spectra of distant quasars, and implies that the universe has a complex ionization history: WMAP has detected the signal from an early epoch of reionization.
    Keywords: Astrophysics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-28
    Description: This project is divided into four main tasks: cell manufacture, acceptance, and lot certification of cells, performance testing of cells, and abuse testing of cells. Lithium/bromine chloride in thionyl chloride (Li/BCX) 149 DD cells (PN 3B2085-XA) were built according to the provisions of Electrochem Industries Quality Plan 17096. Acceptance and lot certification testing was performed according to NASA JSC Document EP5-83-025, Revision B. Acceptance testing included open circuit and load voltage check, visual examination, size and weight measurements, and high temperature exposure. Lot certification tests were performed for capacity performance and for performance under conditions of thermal and electrical abuse. These tests included 149 C exposure, capacity discharge, fuse check, high temperature exposure, high rate discharge, short circuit, vibration, and overdischarge testing. A quantity of 200 cells was delivered to Johnson Space Center for life test evaluation. A parametric evaluation of the capacity discharge of Li/BCX DD cells was performed over a variety of temperatures and discharge rates. This testing served to map the performance capability of the cell. Tests were also performed over a variety of electrical and thermal abuse conditions. Abuse tests included short circuit, charging, overdischarge, high temperature exposure, shock, and vibration.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: NASA-CR-185610 , NAS 1.26:185610 , DRD-SE-1299-T
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...