ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Years
  • 1
    Publication Date: 2018-02-27
    Description: We present results of marine MT acquisition in the Alboran sea that also incorporates previously acquired land MT from southern Spain into our analysis. The marine data show complex MT response functions with strong distortion due to seafloor topography and the coastline, but inclusion of high resolution topography and bathymetry and a seismically defined sediment unit into a 3D inversion model has allowed us to image the structure in the underlying mantle. The resulting resistivity model is broadly consistent with a geodynamic scenario that includes subduction of an eastward trending plate beneath Gibraltar, which plunges nearly vertically beneath the Alboran. Our model contains three primary features of interest: a resistive body beneath the central Alboran, which extends to a depth of ~150 km. At this depth, the mantle resistivity decreases to values of ~100 Ohm-m, slightly higher than those seen in typical asthenosphere at the same depth. This transition suggests a change in slab properties with depth, perhaps reflecting a change in the nature of the seafloor subducted in the past. Two conductive features in our model suggest the presence of fluids released by the subducting slab or a small amount of partial melt in the upper mantle (or both). Of these, the one in the center of the Alboran basin, in the uppermost-mantle (20-30km depth) beneath Neogene volcanics and west of the termination of the Nekkor Fault, is consistent with geochemical models, which infer highly thinned lithosphere and shallow melting in order to explain the petrology of seafloor volcanics.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2024-02-07
    Description: Highlights • New broad band magnetotelluric data covering the whole Gran Canaria island. • First 3D electrical resistivity model of Gran Canaria island at crustal scale. • Low resistivity anomalies found may be of interest for geothermal exploitation. • 3D electrical resitivity shows a good correlation with other geophysical data available at crustal scale. Abstract Gran Canaria, one of the two main islands of the Canary Archipelago off NW Africa, has been volcanically active for at least 15 million years. The island went through several volcanic cycles that varied greatly in composition and extrusive and intrusive activity. The complex orography of the island has excluded extensive land geophysical surveys on the island. A review of the available geophysical information on the island shows that it has been obtained mainly through marine and airborne geophysical surveys. A new dataset comprising 100 magnetotelluric soundings acquired on land has been used to obtain the first 3D electrical resistivity model of the island at crustal scale. The model shows high resistivity values close to the surface in the exposed Tejeda Caldera that extends at depth to the SE cutting the islands in half. Outside the inferred limits of the Tejeda Caldera the 3D model shows low resistivity values that could be explained by hydrothermal alteration at deeper levels and the presence of marine saltwater intrusion at shallower levels near the coast. The presence of unconnected vertical-like structures, with very low resistivity (〈10 ohm m) could be associated to small convective cells is confirmed by the sensitivity analysis carried out in the present study. Those structures are the most likely candidates for a detailed analysis in order to determine their geothermal economic potential. A comprehensive review of existing geophysical data and models of Gran Canaria island and their comparison with the new 3D electrical resistivity model is presented.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...