ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (104)
Collection
Language
  • 1
    Publication Date: 2022-03-30
    Description: In this study, the variability of the spectral dispersion of droplet size distributions (DSDs) in convective clouds is investigated. Analyses are based on aircraft measurements of growing cumuli near the Amazon basin, and on numerical simulations of an idealized ice‐free cumulus. In cleaner clouds, the relative dispersion ϵ, defined as the ratio of the standard deviation to the mean value of the droplet diameter, is negatively correlated with the ratio of the cloud water content (qc) to the adiabatic liquid water content (qa), while no strong correlation between ϵ and qc/qa is seen in polluted clouds. Bin microphysics numerical simulations suggest that these contrasting behaviors are associated with the effect of collision‐coalescence in cleaner clouds, and secondary droplet activation in polluted clouds, in addition to the turbulent mixing of parcels that experienced different paths within the cloud. Collision‐coalescence simultaneously broadens the DSDs and decreases qc, explaining the inverse relationship between ϵ and qc/qa in cleaner clouds. Secondary droplet activation broadens the DSDs but has little direct impact on qc. The combination of a rather modest DSD broadening due to weak collision‐coalescence with enhanced droplet activation in both diluted and highly undiluted cloud regions may contribute to maintain a relatively uniform ϵ within polluted clouds. These findings can be useful for parameterizing the shape parameter (μ) of gamma DSDs in bulk microphysics cloud‐resolving models. It is shown that emulating the observed μ−qc/qa relationship improves the estimation of the collision‐coalescence rate in bulk microphysics simulations compared to the bin simulations.
    Description: Key Points: Droplet size distribution patterns observed in warm cumuli reflect the roles of collision‐coalescence, secondary activation, and mixing. The intra‐cloud distribution of droplet spectral dispersion varies with aerosol loading. Emulating the observed shape‐parameter improves bulk estimations of collision‐coalescence in models.
    Description: Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) http://dx.doi.org/10.13039/501100001807
    Description: Max Planck Society (MPG)
    Description: U.S. Department of Energy (DOE) http://dx.doi.org/10.13039/100000015
    Description: Deutsche Forschungsgemeinschaft (DFG) http://dx.doi.org/10.13039/501100001659
    Description: HALO
    Keywords: ddc:551.5
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Am. J. Phys., London, Geological Society, vol. 58, no. 1-3, pp. 321-329, pp. L11303, (ISBN 1-86239-117-3)
    Publication Date: 1990
    Keywords: Review article ; Chaotic behaviour ; Textbook of informatics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-24
    Description: During the international campaign of June 1991, the active region AR 6659 produced six very large, long-duration flares (X10/12) during its passage across the solar disk. We present the characteristics of four of them (June 4, 6, 9, 15). Precise measurements of the spot motions from Debrecen and Tokyo white-light pictures are used to understand the fragmentation of the main sunspot group with time. This fragmentation leads to a continuous restructuring of the magnetic field pattern while rapid changes are evidenced due to fast new flux emergence (magnetograms of Marshall Space Flight Center (MSFC), Huairou). The first process leads to a shearing of the field lines along which there is energy storage; the second one is the trigger which causes the release of energy by creating a complex topology. We conjecture that these two processes with different time scales are relevant to the production of flares.
    Keywords: SOLAR PHYSICS
    Type: Solar Physics (ISSN 0038-0938); 150; 1-2; p. 199-219
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-23
    Description: In this paper multiwavelength observations of an impulsive flare of May 9, 1991 are presented. This event was observed with the 48 GHz multibeam focal array used at the Itapetinga radio telescope, the microwave patrol telescopes at Bem and the BATSE high time resolution hard X-ray spectrometer on board CGRO. While spatially unresolved low sensitivity observations show two major impulsive peaks, the mm-wave observations with the ability of spatially high resolved tracking of the emission centroids suggest a primarily bipolar source configuration. For the first time two mm-wave sources with a spacing below the HPBW could be separated with the multibeam technique. The general features of the observations are explained as emission of partially trapped electrons. Furthermore we present evidence for highly inhomogeneous substructures within one of the two mm-wave sources for which the positional scatter of the emission center, within 2s, is less than 2".
    Keywords: Solar Physics
    Type: Astronomy and Astrophysics; Volume 317; 232-243
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-08-19
    Description: Different aspects of the heating of the deep solar atmosphere during flares, including temperature minimum enhancements and white light emission, are discussed. The proper treatment of H(-) radiative losses is discussed, and compared with previous studies, as well as a quantitative analysis of the ionizing effect of nonthermal particles and ultraviolet radiation. It is concluded that temperature minimum heating may be a natural consequence of the global radiation transport in flares. The implications of these results are discussed within the context of homogeneous and inhomogeneous models of the solar atmosphere.
    Keywords: SOLAR PHYSICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-08-19
    Description: It is shown that flaring activity as seen in X-rays usually encompasses two or more interacting magnetic bipoles within an active region. Soft and hard X-ray spatiotemporal evolution is considered as well as the time dependence of the thermal energy content in different magnetic bipoles participating in the flare, the hardness and impulsivity of the hard X-ray emission, and the relationship between the X-ray behavior and the strength and 'observable shear' of the magnetic field. It is found that the basic structure of a flare usually consists of an initiating closed bipole plus one or more adjacent closed bipoles impacted against it.
    Keywords: SOLAR PHYSICS
    Type: Astrophysical Journal, Part 1 (ISSN 0004-637X); 326; 425-450
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-19
    Description: Using the Hard X-ray Imaging Spectrometer (HXIS) from the Solar Maximum Mission Satellite, the morphological aspects and temporal evolution of three major flares which occurred on June 29, 1980 are studied. One of these events, observed at 10:40 UT, is analyzed in particular detail, including Hard X-ray Burst Spectrometer (HXRBS) data and metric wavelength data from the Nancay radioheliograph. The flares occurred during the interaction of two distinct magnetic structures. There is an early onset phase during which there is a weak level of particle acceleration, perhaps accompanied by strong heating within the magnetic interaction region. The impulsive phase of high power energy release is associated with a major interaction between the two structures and accompanied by strong acceleration and heating.
    Keywords: SOLAR PHYSICS
    Type: Astronomy and Astrophysics (ISSN 0004-6361); 167; 1, Oc; 77-90
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-08-19
    Description: It is shown that the onset of solar flares, within about 2 min or less before the impulsive peaks, is characterized by an increase in high-energy emission at E less than 100 keV, and strong broadening of soft X-ray lines characteristic of the 10-million-K plasma already present at this stage. The observations are interpreted in terms of the early signature of energy release, during a phase preceding the instability that leads to strong particle acceleration.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 6; 6, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-19
    Description: The observational characteristics of series of multiple-loop flares from a complex active region are summarized. The location of the highest observed photospheric magnetic shear is found to be the commonly observed site of flare onset, but not, in many cases, the magnetic region where the largest time-integrated energy release is observed. The observations thus reveal a consistent pattern of energy-release processes related to the magnetic-field topology.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 6; 6, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-19
    Description: The observable spatio-temporal characteristics of the energy release in flares and their association with the magnetic environment and tracers of field dynamics are reviewed. The observations indicate that impulsive phase manifestations, like particle acceleration, may be related to the formation of neutral sheets at the interface between interacting bipoles, but that the site for the bulk of the energy release is within closed loops rather than at the interaction site.
    Keywords: SOLAR PHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 6; 6, 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...