ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (40)
  • 1
    Publication Date: 2004-12-03
    Description: A pseudobreakup is a phenomenon similar to the substorm expansive phase onset, including an activation of an auroral arc, a burst of Pi2 micropulsations, and enhancement of the westward electrojet. However, these effects are weak and a pseudobreak is generally assumed to be very localized. The pseudobreakups are discussed based on simultaneous observations made in space and on the ground during the substorm growth phase. In the events studied the main features listed above are found, but the significance of the localization is unclear. The optical pseudobreakup, with associated magnetic perturbations, is highly localized, but simultaneously a wide local time sector of the auroral oval may be activated. The major differences between pseudobreakups and substorm expansive phase onsets are concluded to be the intensity and the development that follows. Careful study of pseudobreakups may help to determine phase initiation, and the role of the ionosphere-magnetosphere coupling in the substorm process.
    Keywords: GEOPHYSICS
    Type: ESA, Substorms 1; p 111-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: The particle scattering and current sheet stability features in the geomagnetic tail during the phase of substorm growth were investigated using Tsyganenko's (1989) magnetic field model. In a study of four substorm events which were observed both in the high-altitude nightside tail and in the auroral ionosphere, the model magnetic field was adjusted to each case so as to represent the global field development during the growth phase of the substorms. The model results suggest that the auroral brightenings are connected with processes taking place in the near-earth region inside about 15 earth radii. The results also suggest that there is a connection between the chaotization of the electrons and the auroral brightenings at substorm onset.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 97; A12; p. 19,283-19,297.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-08-19
    Description: Lightning location data from northeastern Colorado and central Florida for the summer months of 1983 have been studied to ascertain the diurnal development of spatial distributions of flash frequencies. The data sources are discussed, and for both investigated regions, the regional geographic and climatic characteristics, the day-to-day variability of lightning activity, the diurnal cycle over the entire region, the spatial distribution of lightning activity, the diurnal changes of spatial distribution, and the diurnal variation of lightning at individual sites are described in detail. In both regions, the time and space distributions of lightning are modulated by the topographic features and the contrasts of the terrain. Lightning activity is a relatively rare and variable phenomenon in both regions when day-to-day frequencies are considered. There thus must be meteorological parameters that determine the extent and frequency of lightning occurrence.
    Keywords: METEOROLOGY AND CLIMATOLOGY
    Type: Monthly Weather Review (ISSN 0027-0644); 114; 1288-131
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2016-06-07
    Description: Construction of a Solar Power Satellite (SPS) would require the injection of large quantities of propellant to transport material from Low Earth Orbit (LEO) to the construction site at Geostationary Earth Orbit (GEO). This injection, in the form of approx 10 to the 32nd power, 2 KeV argon ions (and associated electrons) per SPS, is comparable to the content of the plasmasphere (approx 10 to the 31st power ions). In addition to the mass deposited, this represents a considerable injection of energy. The injection is examined in terms of a simple model for the expansion of the beam plasma. General features of the subsequent magnetospheric convection of the argon are also examined.
    Keywords: GEOPHYSICS
    Type: NASA. Lewis Research Center Spacecraft Environ. Interactions Technol., 1983; p 675-692
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-06-07
    Description: It is proposed that a strong magnet (terrella) be flown at or near the Space Station to create an artificial magnetosphere in a laboratory setting. The relative flow of the ionosphere past the terrella will constitute a plasma wind that will interact with the magnetic field of the terrella to produce a localized magnetosphere. This object could then be extensively studied using diagnostic probes attached to the Space Station, or with free flyers. The space and storage requirements would be minimal, since the experiment would be conducted outside the space station. The total equipment would consist of several terrella (with varying surface conductivities), approximately 3 small magnetometer/plasma diagnostic packages, and several gas canisters for upstream seeding. Power requirements would be approximately 60 watts. Several track mounted tethers, each approximately or 200 m long in length, with track parallel to the orbital motion and 100 m long, are also needed. Astronaut time needed would be minimal in the tethered configuration (approximately 4 man hours/week). A free flying configuration, while not needing the tether track, would require much more human interaction.
    Keywords: GROUND SUPPORT SYSTEMS AND FACILITIES (SPACE)
    Type: NASA. Lyndon B. Johnson Space Center Space Station Planetology Experiments (SSPEX); 1 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: This paper reports the multisatellite and ground observations of two pseudo-substorm onset events that occurred successively at 0747 UT and 0811 UT, May 30, 1985, with more attention to the 0747 UT onset. The distinguishing features of the 0747 UT event are as follows. (1) The substorm-associated tail reconfiguration started in a very localized region in the near-Earth magnetotail. (2) The magnitude of the current disruption decreased markedly as the disruption region expanded tailward. (3) On the ground the onset of a very small negative bay (approx. 40 nT) was observed simultaneously with the onset of the current disruption, but over a much wider local time sector than the near-Earth tail reconfiguration. Positive bay onsets at mid-latitudes also had a longitudinally wide distribution. From these features we infer than in the present event the current disruption took place filamentarily near AMPTE/CCE at approx. 8.8 R(sub E). It is also inferred that pseudo-substorm onsets are distinguished from standard substorm onsets by the absence of a global expansion of the current disruption, and that the spatial scales of the onset region in the magnetosphere is not a major difference between the two. The present study suggests that the spatial distribution of the magnetic distortion before onsets is an important factor to determine the expansion scale of the current disruption. It is also suggested that the current disruption is basically an internal process of the magnetosphere.
    Keywords: ASTROPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 98; A11; p. 19,355-19,367
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Recent simulations of magnetotail reconnection have pointed to a link between plasma flows, dipolarization, and the substorm current wedge. In particular, Hesse and Birn (1991) have proposed that earthward jetting of plasma from the reconnection region transports flux into the near-Earth region. At the inner edge of the plasma sheet this flux piles up, producing a dipolarization of the magnetic field. The vorticity produced by the east-west deflection of the flow at the inner edge of the plasma sheet gives rise to field-aligned currents that have region 1 polarity. Thus in this scenario the earthward flow from the reconnection region produces the dipolarization ad the current wedge in a self-consistent fashion. In this study we examine observations made on April 8, 1985 by the Active Magnetospheric Particle Tracer Explorers (AMPTE)/Ion Release Module (IRM), the geosynchronous satellites 1979-053, 1983-019, and 1984-037, and Syowa station, as well as AE. This event is unique because IRM was located near the neutral sheet in the midnight sector for am extended period of time. Ground data show that there was ongoing activity in the IRM local time sector for several hours, beginning at 1800 UT and reaching a crescendo at 2300 UT. This activity was also accompanied by energetic particle variations, including injections, at geosynchronous orbit in the nighttime sector. Significantly, there were no fast flows at the neutral sheet until the great intensification of activity at 2300 UT. At that time, IRM recorded fast eartheard flow simultaneous with a dipolatization of the magetic field. We conclude that while the aforementioned scenario for the creation of the current wedge encounters serious problems explaining the earlier activity, the observations at 2300 UT are consistent with the scenario of Hesse and Birn (1191). On that basis it is argued that the physics of substorms is not exclusively rooted in the development of a global tearing mode. Processes at the inner edge of the cross-tail current that cause a disruption of the current and a consequent dipolarization and current wedge may be unrelated to the formation of a macroscale reconnection region. Thus the global evolution of a substorm is probably a complicated superposition of such processes operating on a very localized scale and a global macroscale process that allows for such things as releasing te energy stored in lobe flux and creation of plasmoids.
    Keywords: GEOPHYSICS
    Type: Journal of Geophysical Research (ISSN 0148-0227); 99; A12; p. 3,561-23,569
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-19
    Description: Magnetic flux circulation is a primary mode of energy transfer from the solar wind into the ionosphere and inner magnetosphere. For southward interplanetary magnetic field (IMF), magnetic flux circulation is described by the Dungey cycle (dayside merging, night side reconnection, and magnetospheric convection), and both the ionosphere and inner magnetosphere receive energy. For dawn-dusk oriented IMF, magnetic flux circulation is not well understood, and the inner magnetosphere does not receive energy. Several models have been suggested for possible reconnection patterns; the general pattern is: dayside merging; reconnection on the dayside or along the dawn/dusk regions; and, return flow on dayside only. These models are consistent with the lack of energy in the inner magnetosphere. We will present evidence that the Dungey cycle does not explain the energy transfer during dawn-dusk oriented IMF. We will also present evidence of how magnetic flux does circulate during dawn-dusk oriented IMF, specifically how the magnetic flux reconnects and circulates back.
    Keywords: Geophysics
    Type: Poser presentation at the American Geophysical Union Fall Meeting 2010; Dec 16, 2010; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: The principles of the current sheet catastrophe models are briefly reviewed, and observations of some of the signatures predicted by the theory are presented. The data considered here include AMPTE/CCE observations of fifteen current sheet disruption events. According to the model proposed here, the root cause of the current disruption is some process, as yet unknown, that leads to an increase in the k sub A parameter. Possible causes for the increase in k sub A are discussed.
    Keywords: GEOPHYSICS
    Type: Geophysical Research Letters (ISSN 0094-8276); 19; 16 A
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: This paper presents a statistical study of the radial and azimuthal propagation of substorm effects in the near-geosynchronous magnetotail. Data from five spacecraft (AMPTE/CCE, 1979-053, 1982-019, GOES-5, and GOES-6) have been used in the study. Since CCE has an apogee of 8.8 earth radii, those data allow for the study of both the radial and azimuthal propagation characteristics of substorm events. A list of ion injections was compiled from CCE energetic particle data obtained in 1985 and 1986. Those injections are dispersionless over an energy range of 25 to 285 keV on a 72-sec time scale. Dispersionless injections during which 1979-053 or 1982-019 were on the nightside in close longitudinal proximity to CCE were selected for the study. The most significant correlation in the data is between the local time separation between any two spacecraft and the time delay between the local onsets.
    Keywords: GEOPHYSICS
    Type: Advances in Space Research (ISSN 0273-1177); 8; 9-10; 91-95
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...