ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Studying the El Nino Southern Oscillation (ENSO) in the past can help us better understand its dynamics and improve its future projections. However, both paleoclimate reconstructions and model simulations of ENSO strength at the Last Glacial Maximum (LGM; 21 ka B.P.) have led to contradicting results. Here we perform model simulations using the recently developed water isotope-enabled Community Earth System Model (iCESM). For the first time, model-simulated oxygen isotopes are directly compared with those from ENSO reconstructions using the individual foraminifera analysis (IFA). We find that the LGM ENSO is most likely weaker comparing with the preindustrial. The iCESM suggests that total variance of the IFA records may only reflect changes in the annual cycle instead of ENSO variability as previously assumed. Furthermore, the interpretation of subsurface IFA records can be substantially complicated by the habitat depth of thermocline-dwelling foraminifera and their vertical migration with a temporally varying thermocline.
    Keywords: Oceanography; Meteorology and Climatology
    Type: GSFC-E-DAA-TN46288 , Geophysical Research Letters (ISSN 0094-8276) (e-ISSN 1944-8007); 44; 13; 6984-6992
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Speleothem records from the South Asian summer monsoon (SASM) region display variability in the ratio of O-18 and O-16 ( O-18) in calcium carbonate at orbital frequencies. The dominant mode of variability in many of these records reflects cycles of precession. There are several potential explanations for why SASM speleothem records show a strong precession signal, including changes in temperature, precipitation, and circulation. Here we use an Earth system model with water isotope tracers and water-tagging capability to deconstruct the precession signal found in SASM speleothem records. Our results show that cycles of precession-eccentricity produce changes in SASM intensity that correlate with local temperature, precipitation, and O-18. However, neither the amount effect nor temperature differences are responsible for the majority of the SASM O-18 variability. Instead, changes in the relative moisture contributions from different source regions drive much of the SASM O-18 signal, with more nearby moisture sources during Northern Hemisphere summer at aphelion and more distant moisture sources during Northern Hemisphere summer at perihelion. Further, we find that evaporation amplifies the O-18 signal of soil water relative to that of precipitation, providing a better match with the SASM speleothem records. This work helps explain a significant portion of the long-term variability found in SASM speleothem records.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN58219 , Journal of Geophysical Research: Atmospheres (ISSN 2169-897X) (e-ISSN 2169-8996); 123; 11; 5927-5946
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...