ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1)
Collection
Years
  • 1
    Publication Date: 2019-02-01
    Description: An anaerobic nitrate-reducing Fe(II)-oxidizing bacterium, Pseudogulbenkiania sp. strain 2002, was used to investigate As immobilization by biogenic Fe oxyhydroxides under different initial molar ratios of Fe/As in solutions. Results showed that Fe(II) was effectively oxidized, mainly forming lepidocrocite, which immobilized more As(III) than As(V) without changing the redox state of As. When the initial Fe/As ratios were kept constant, higher initial Fe(II) concentrations immobilized more As with higher Asimmobilized/Feprecipitated in biogenic lepidocrocite. EXAFS analysis showed that variations of initial Fe(II) concentrations did not change the As–Fe complexes (bidentate binuclear complexes (2C)) with a fixed As(III) or As(V) initial concentration of 13.3 μM. On the other hand, variations in initial As concentrations but fixed Fe(II) initial concentration induced the co-occurrence of bidentate binuclear and bidentate mononuclear complexes (2E) and bidentate binuclear and monodentate mononuclear complexes (1V) for As(III) and As(V)-treated series, respectively. The coexistence of 2C and 2E complexes (or 2C and 1V complexes) could contribute to higher As removal in experimental series with higher initial Fe(II) concentrations at the same initial Fe/As ratio. Simultaneous removal of soluble As and nitrate by anaerobic nitrate-reducing Fe(II)-oxidizing bacteria provides a feasible approach for in situ remediation of As-nitrate cocontaminated groundwater.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...