ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-10-19
    Description: Methane (CH4) emission budgets remain uncertain and are projected to grow as oil and gas production from short-lived wells increases and their subsequent transport through aging gas distribution networks. Orders-of-magnitude variations in temporal, spatial, and emission scales present a key challenge to leak detection and quantification. Also, the probability distributions for large and stochastic, leaky systems such as geological reservoirs (by natural migration-seeps) and petroleum production from those reservoirs remain largely unknown, needed to address current approach limitations. The scale of many petroleum systems favors remote sensing, but the sensitivity of such systems often precludes detection of weak emissions. Consequently, an accurate evaluation requires that the relative contribution from the emission "tails" of small leaks also be quantified, which is best carried out using high-sensitivity in situ methods. Fusion of remote sensing and in situ approaches leverages complementary capabilities to address these limitations. We show results from mobile surface (AMOG) and airborne in situ (AJAX) and thermal-infrared (TIR) hyperspectral imaging spectroscopy (Mako) data applied to a producing oil field in the California Central Valley near Bakersfield. AMOG is an automobile-based mobile lab that measures 13 trace gases, aerosol size distributions and vertical profiles, 3D winds and other meteorology, and atmospheric column measurements by solar spectroscopy at highway speeds. AJAX measures 5 trace gases and 3D winds at ~140 m/s. Mako is a broad-area TIR imaging spectrometer that can discriminate multiple gases present in each pixel acquired. In situ-derived, total field emissions were 3116 Gg/yr CH4. This was compared with Mako-derived emissions from all plumes identified across the study site. We found that super-emitters were not the dominant emissions mode and the spatial pattern of plume locations from production infrastructure was correlated to geological structures.
    Keywords: Earth Resources and Remote Sensing
    Type: ARC-E-DAA-TN65111 , American Geophysical Union (AGU) Fall Meeting 2018; Dec 10, 2018 - Dec 14, 2019; Washington, DC; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Methane's (CH4) large global warming potential (Shindell et al., 2012) and likely increasing future emissions due to global warming feedbacks emphasize its importance to anthropogenic greenhouse warming (IPCC, 2007). Furthermore, CH4 regulation has far greater near-term climate change mitigation potential versus carbon dioxide CO2, the other major anthropogenic Greenhouse Gas (GHG) (Shindell et al., 2009). Uncertainties in CH4 budgets arise from the poor state of knowledge of CH4 sources - in part from a lack of sufficiently accurate assessments of the temporal and spatial emissions and controlling factors of highly variable anthropogenic and natural CH4 surface fluxes (IPCC, 2007) and the lack of global-scale (satellite) data at sufficiently high spatial resolution to resolve sources. Many important methane (and other trace gases) sources arise from urban and mega-urban landscapes where anthropogenic activities are centered - most of humanity lives in urban areas. Studying these complex landscape tapestries is challenged by a wide and varied range of activities at small spatial scale, and difficulty in obtaining up-to-date landuse data in the developed world - a key desire of policy makers towards development of effective regulations. In the developing world, challenges are multiplied with additional political access challenges. As high spatial resolution satellite and airborne data has become available, activity mapping applications have blossomed - i.e., Google maps; however, tap a minute fraction of remote sensing capabilities due to limited (three band) spectral information. Next generation approaches that incorporate high spatial resolution hyperspectral and ultraspectral data will allow detangling of the highly heterogeneous usage megacity patterns by providing diagnostic identification of chemical composition from solids (refs) to gases (refs). To properly enable these next generation technologies for megacity include atmospheric radiative transfer modeling the complex and often aerosol laden, humid, urban microclimates, atmospheric transport and profile monitoring, spatial resolution, temporal cycles (diurnal and seasonal which involve interactions with the surrounding environment diurnal and seasonal cycles) and representative measurement approaches given traffic realities. Promising approaches incorporate contemporaneous airborne remote sensing and in situ measurements, nocturnal surface surveys, with ground station measurement
    Keywords: Environment Pollution; Earth Resources and Remote Sensing
    Type: M13-3047 , Hyperspectrai Infrared Imager (HyspIRl) Science and Applications Workshop; Oct 15, 2013 - Oct 17, 2013; Pasadena, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Marine and Petroleum Geology, 68 . pp. 776-788.
    Publication Date: 2017-12-19
    Description: Highlights • First study using long-term passive acoustic monitoring of methane seeps at well blowout site 22/4b. • Seep acoustic temporal variations correlated with ocean tides. • Major acoustic transient event recorded on 8 December 2011 with high temporal resolution. Abstract Marine seeps produce underwater sounds as a result of bubble formation and fragmentation upon emission from the seabed. The frequency content and sound levels of these emissions are related to bubble size distribution and emission flux, providing important information on methane release from the seafloor. Long-term passive acoustic monitoring was used to continuously record seep sounds over a 7-month period within the blowout crater at the abandoned well site, 22/4b, in the central North Sea. Also recorded were water column fluid velocities and near-seafloor water conductivity, temperature, and pressure. Acoustic signatures were primarily from ∼1 to 10 kHz. Key features were relatively broad spectral peaks at about 1.0, 1.5, 2.2, 3.1, 3.6 and 5.1 kHz. Temporal variations in spectral levels were apparently associated with tides. The recordings also documented a series of major episodic events including a large and persistent increase (∼10 dB) in overall sound levels and spectral broadening on 8 December 2011. The acoustic temporal pattern of this event was consistent with other recorded large transient events in the literature, and the major event was correlated with dramatic changes in other measurements, including increased water column fluid velocities, increased pressure and decreased salinity, indicating real changes in emission flux. Observed seabed morphology changes reported elsewhere in this special issue, also likely were related to this event. These data demonstrate the dynamic nature of marine seepage systems, show the value of monitoring systems, and provide direct supporting evidence for a violent formation mechanism of many widespread seep-associated seabed features like pockmarks.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-09-08
    Description: Kessler et al. (Reports, 21 January 2011, p. 312) reported that methane released from the 2010 Deepwater Horizon blowout, approximately 40% of the total hydrocarbon discharge, was consumed quantitatively by methanotrophic bacteria in Gulf of Mexico deep waters over a 4-month period. We find the evidence explicitly linking observed oxygen anomalies to methane consumption ambiguous and extension of these observations to hydrate-derived methane climate forcing premature.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-24
    Description: Large quantities of methane are stored in hydrates and permafrost within shallow marine sediments in the Arctic Ocean. These reservoirs are highly sensitive to climate warming, but the fate of methane released from sediments is uncertain. Here, we review the principal physical and biogeochemical processes that regulate methane fluxes across the seabed, the fate of this methane in the water column, and potential for its release to the atmosphere. We find that, at present, fluxes of dissolved methane are significantly moderated by anaerobic and aerobic oxidation of methane. If methane fluxes increase then a greater proportion of methane will be transported by advection or in the gas phase, which reduces the efficiency of the methanotrophic sink. Higher freshwater discharge to Arctic shelf seas may increase stratification and inhibit transfer of methane gas to surface waters, although there is some evidence that increased stratification may lead to warming of sub-pycnocline waters, increasing the potential for hydrate dissociation. Loss of sea-ice is likely to increase wind speeds and seaair exchange of methane will consequently increase. Studies of the distribution and cycling of methane beneath and within sea ice are limited, but it seems likely that the sea-air methane flux is higher during melting in seasonally ice-covered regions. Our review reveals that increased observations around especially the anaerobic and aerobic oxidation of methane, bubble transport, and the effects of ice cover, are required to fully understand the linkages and feedback pathways between climate warming and release of methane from marine sediments.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-10-10
    Description: The presence of a seasonal thermocline likely plays a key role in restraining methane released from a seabed source in the deeper water column, thereby inhibiting exchange to the atmosphere. The bubble plume itself, however, generates an upward motion of fluid, e.g. upwelling and may thereby be partially responsible for an early breakdown of the seasonal thermocline. Measurements at site 22/4b, located at (57°550N, 1°380E) in the UK Central North Sea, 200 km east of the Scottish mainland, where gas is still being released since a blow out in 1990, have been used to identify the generation of the seasonal thermocline, and thus, the depth of the upper mixed layer and its breakdown in autumn. Data derived from two landers, containing an Acoustic Doppler Current Profiler and a Conductivity Temperature Depth recorder, were used to determine the mixed layer depth and the breakdown of the thermocline. Mixing of upper layer fluid into the lower layer has been inferred from large amplitude variations in the nearbottom temperature. The ADCPs estimate velocity profiles in four beam directions using Doppler shifted frequency from acoustic pings sent out and received by four different transducers in a specific configuration. Besides that, the intensity of the backscattered sound per transducer is also recorded. Bubbles from the nearby plume contaminate the signal during part of the tidal cycle, but in bubble free periods, the mixed layer depth can be estimated using the acoustic backscatter signal as local maxima. Results show that the thermocline broke down between mid-October and early November, several weeks earlier than the breakdown of the thermocline in nearby/comparable areas, likely caused by bubble-induced downwelling at the site. The early breakdown of the thermocline was accompanied by multiple occurrence of a strong jet-like structure, associated with the seasonal tidal mixing front.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-21
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2014-09-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-09-03
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-09-23
    Description: Highlights • A new bentho-pelagic transport mechanism of microorganisms is hypothesized • A bubble transport hypothesis was tested using a new gas bubble-collecting device • Bubble-mediated transport rate of methanotrophs was quantified at a gas vent • The Bubble Transport Mechanism may influence the pelagic methane sink Abstract The importance of methanotrophic microorganisms in the sediment and water column for balancing marine methane budgets is well accepted. However, whether methanotrophic populations are distinct for benthic and pelagic environments or are the result of exchange processes between the two, remains an area of active research. We conducted a field pilot study at the Rostocker Seep site (Coal Oil Point seep field, offshore California, USA) to test the hypothesis that bubble-mediated transport of methane-oxidizing microorganisms from the sediment into the water column is quantifiable. Measurements included dissolved methane concentration and showed a strong influence of methane seepage on the water-column methane distribution with strongly elevated sea surface concentrations with respect to atmospheric equilibrium (saturation ratio ~17,000%). Using Catalyzed Reporter Deposition Fluorescence In Situ Hybridization (CARD FISH) analysis, aerobic methane oxidizing bacteria (MOB) were detected in the sediment and the water column, whereas anaerobic methanotrophs (ANME-2) were detected exclusively in the sediment. Critical data for testing the hypothesis were collected using a novel bubble catcher that trapped naturally emanating seep gas bubbles and any attached particles approximately 15 cm above the seafloor. Bubble catcher experiments were carried out directly above a natural bubble seep vent and at a nearby reference site, for which an “engineered” nitrogen bubble vent without sediment contact was created. Our experiments indicate the existence of a “Bubble Transport Mechanism”, which transports MOB from the sediment into the water column. In contrast, ANME-2 were not detected in the bubble catcher. The Bubble Transport Mechanism could have important implications for the connectivity between benthic and pelagic methanotrophic communities at methane seep sites.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...