ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (6)
  • 1
    Publication Date: 2019-09-23
    Description: Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations. CO2 emissions from fossil fuels and industry (EFF) are based on energy statistics and cement production data, while emissions from land-use change (ELUC), mainly deforestation, are based on combined evidence from land-cover-change data, fire activity associated with deforestation, and models. The global atmospheric CO2 concentration is measured directly and its rate of growth (GATM) is computed from the annual changes in concentration. The mean ocean CO2 sink (SOCEAN) is based on observations from the 1990s, while the annual anomalies and trends are estimated with ocean models. The variability in SOCEAN is evaluated with data products based on surveys of ocean CO2 measurements. The global residual terrestrial CO2 sink (SLAND) is estimated by the difference of the other terms of the global carbon budget and compared to results of independent dynamic global vegetation models forced by observed climate, CO2, and land-cover change (some including nitrogen–carbon interactions). We compare the mean land and ocean fluxes and their variability to estimates from three atmospheric inverse methods for three broad latitude bands. All uncertainties are reported as ±1σ, reflecting the current capacity to characterise the annual estimates of each component of the global carbon budget. For the last decade available (2005–2014), EFF was 9.0 ± 0.5 GtC yr−1, ELUC was 0.9 ± 0.5 GtC yr−1, GATM was 4.4 ± 0.1 GtC yr−1, SOCEAN was 2.6 ± 0.5 GtC yr−1, and SLAND was 3.0 ± 0.8 GtC yr−1. For the year 2014 alone, EFF grew to 9.8 ± 0.5 GtC yr−1, 0.6 % above 2013, continuing the growth trend in these emissions, albeit at a slower rate compared to the average growth of 2.2 % yr−1 that took place during 2005–2014. Also, for 2014, ELUC was 1.1 ± 0.5 GtC yr−1, GATM was 3.9 ± 0.2 GtC yr−1, SOCEAN was 2.9 ± 0.5 GtC yr−1, and SLAND was 4.1 ± 0.9 GtC yr−1. GATM was lower in 2014 compared to the past decade (2005–2014), reflecting a larger SLAND for that year. The global atmospheric CO2 concentration reached 397.15 ± 0.10 ppm averaged over 2014. For 2015, preliminary data indicate that the growth in EFF will be near or slightly below zero, with a projection of −0.6 [range of −1.6 to +0.5] %, based on national emissions projections for China and the USA, and projections of gross domestic product corrected for recent changes in the carbon intensity of the global economy for the rest of the world. From this projection of EFF and assumed constant ELUC for 2015, cumulative emissions of CO2 will reach about 555 ± 55 GtC (2035 ± 205 GtCO2) for 1870–2015, about 75 % from EFF and 25 % from ELUC. This living data update documents changes in the methods and data sets used in this new carbon budget compared with previous publications of this data set (Le Quéré et al., 2015, 2014, 2013). All observations presented here can be downloaded from the Carbon Dioxide Information Analysis Center (doi:10.3334/CDIAC/GCP_2015).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: As a response to public demand for a well-documented, quality controlled, publically available, global surface ocean carbon dioxide (CO2) data set, the international marine carbon science community developed the Surface Ocean CO2 Atlas (SOCAT). The first SOCAT product is a collection of 6.3 million quality controlled surface CO2 data from the global oceans and coastal seas, spanning four decades (1968–2007). The SOCAT gridded data presented here is the second data product to come from the SOCAT project. Recognizing that some groups may have trouble working with millions of measurements, the SOCAT gridded product was generated to provide a robust, regularly spaced CO2 fugacity (fCO2) product with minimal spatial and temporal interpolation, which should be easier to work with for many applications. Gridded SOCAT is rich with information that has not been fully explored yet (e.g., regional differences in the seasonal cycles), but also contains biases and limitations that the user needs to recognize and address (e.g., local influences on values in some coastal regions).
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-09-23
    Description: A well documented, publicly available, global data set of surface ocean carbon dioxide (CO2) parameters has been called for by international groups for nearly two decades. The Surface Ocean CO2 Atlas (SOCAT) project was initiated by the international marine carbon science community in 2007 with the aim of providing a comprehensive, publicly available, regularly updated, global data set of marine surface CO2, which had been subject to quality control (QC). Many additional CO2 data, not yet made public via the Carbon Dioxide Information Analysis Center (CDIAC), were retrieved from data originators, public websites and other data centres. All data were put in a uniform format following a strict protocol. Quality control was carried out according to clearly defined criteria. Regional specialists performed the quality control, using state-of-the-art web-based tools, specially developed for accomplishing this global team effort. SOCAT version 1.5 was made public in September 2011 and holds 6.3 million quality controlled surface CO2 data points from the global oceans and coastal seas, spanning four decades (1968–2007). Three types of data products are available: individual cruise files, a merged complete data set and gridded products. With the rapid expansion of marine CO2 data collection and the importance of quantifying net global oceanic CO2 uptake and its changes, sustained data synthesis and data access are priorities
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968–2007 to 1968–2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2024-02-07
    Description: The oceanic uptake and resulting storage of the anthropogenic CO2 (Cant) that humans have emitted into the atmosphere moderates climate change. Yet our knowledge about how this uptake and storage has progressed in time remained limited. Here, we determine decadal trends in the storage of Cant by applying the eMLR(C*) regression method to ocean interior observations collected repeatedly since the 1990s. We find that the global ocean storage of Cant grew from 1994 to 2004 by 29 ± 3 Pg C dec−1 and from 2004 to 2014 by 27 ± 3 Pg C dec−1 (±1σ). The storage change in the second decade is about 15 ± 11% lower than one would expect from the first decade and assuming proportional increase with atmospheric CO2. We attribute this reduction in sensitivity to a decrease of the ocean buffer capacity and changes in ocean circulation. In the Atlantic Ocean, the maximum storage rate shifted from the Northern to the Southern Hemisphere, plausibly caused by a weaker formation rate of North Atlantic Deep Waters and an intensified ventilation of mode and intermediate waters in the Southern Hemisphere. Our estimates of the Cant accumulation differ from cumulative net air-sea flux estimates by several Pg C dec−1, suggesting a substantial and variable, but uncertain net loss of natural carbon from the ocean. Our findings indicate a considerable vulnerability of the ocean carbon sink to climate variability and change. Key Points: - The global ocean storage of anthropogenic carbon grew by 29 ± 3 and 27 ± 3 Pg C dec−1 from 1994 to 2004 and 2004 to 2014, respectively - The change in oceanic storage of anthropogenic carbon relative to the atmospheric CO2 growth decreased by 15 ± 11% from the first to the second decade - This reduction is attributed to a decrease of the ocean buffer capacity and changes in ocean circulation
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2021-04-22
    Description: The seasonal cycle represents one of the largest signals of dissolved inorganic carbon (DIC) in the ocean, yet these seasonal variations are not well established at a global scale. Here, we present the Mapped Observation‐Based Oceanic DIC (MOBO‐DIC) product, a monthly DIC climatology developed based on the DIC measurements from GLODAPv2.2019 and a two‐step neural network method to interpolate and map the measurements. MOBO‐DIC extends from the surface down to 2,000 m and from 65°N to 65°S. We find the largest seasonal amplitudes of surface DIC in the northern high‐latitude Pacific (∼30 to 〉50 μmol kg−1). Surface DIC maxima occur in hemispheric spring and minima in fall, driven by the input of DIC into the upper ocean by mixing during winter, and net community production (NCP) driven drawdown of DIC over summer. The seasonal pattern seen at the surface extends to a nodal depth of 〈50 m in the tropics and several hundred meters in the subtropics. Below the nodal depth, the seasonal cycle of DIC has the opposite phase, primarily owing to the seasonal accumulation of DIC stemming from the remineralization of sinking organic matter. The well‐captured seasonal drawdown of DIC in the mid‐latitudes (23° to 65°) allows us to estimate the spring‐to‐fall NCP in this region. We find a spatially relatively uniform spring‐to‐fall NCP of 1.9 ± 1.3 mol C m−2 yr−1, which sums to 3.9 ± 2.7 Pg C yr−1 over this region. This corresponds to a global spring‐to‐fall NCP of 8.2 ± 5.6 Pg C yr−1.
    Description: Key Points We present a near‐global monthly DIC climatology (MOBO‐DIC) based on ship observations and a two‐step neural network Seasonal surface DIC amplitudes range from 0 to more than 50 μmol kg−1 MOBO‐DIC yields a spring‐to‐fall NCP in the euphotic zone of the mid‐latitudes of 3.9 ± 2.7 Pg C yr−1
    Description: European Community's Horizon 2020 Project
    Description: International Max Planck Research School on Earth System Modelling (IMPRS‐ESM)
    Keywords: 551 ; DIC ; seasonal variability ; neural networks ; SOM‐FFN ; monthly climatology ; NCP
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...