ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (16)
Collection
Source
  • 1
    Publication Date: 2021-02-08
    Description: Fossil carbonate skeletons of marine organisms are archives for understanding the development and evolution of palaeo-environments. However, the correct assessment of past environment dynamics is only possible when pristine skeletons and their biogenic characteristics are unequivocally distinguishable from diagenetically-altered skeletal elements and non-biogenic features. In this study, we extend our work on diagenesis of biogenic aragonite (Casella et al. 2017) to the investigation of biogenic low-Mg calcite using brachiopod shells. We examined and compared microstructural characteristics induced by laboratory-based alteration to structural features derived from diagenetic alteration in natural environments. We used four screening methods: cathodoluminescence (CL), cryogenic and conventional field emission-scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) and electron backscatter diffraction (EBSD). We base our assessments of diagenetic alteration and overprint on measurements of, a) images of optical overprint signals, b) changes in calcite crystal orientation patterns, and c) crystal co-orientation statistics. According to the screening process, altered and overprinted samples define two groups. In Group 1 the entire shell is diagenetically overprinted, whereas in Group 2 the shell contains pristine as well as overprinted parts. In the case of Group 2 shells, alteration occurred either along the periphery of the shell including the primary layer or at the interior-facing surface of the fibrous/columnar layer. In addition, we observed an important mode of the overprinting process, namely the migration of diagenetic fluids through the endopunctae corroborated by mineral formation and overprinting in their immediate vicinity, while leaving shell parts between endopunctae in pristine condition. Luminescence (CL) and microstructural imaging (FE-SEM) screening give first-order observations of the degree of overprint as they cover macro-to micron scale alteration features. For a comprehensive assessment of diagenetic overprint these screening methods should be complemented by screening techniques such as EBSD and AFM. They visualise diagenetic changes at submicron and nanoscale levels depicting the replacement of pristine nanocomposite mesocrystal biocarbonate (NMB) by inorganic rhombohedral calcite (IRC). The integration of screening methods allows for the unequivocal identification of highly-detailed alteration features as well as an assessment of the degree of diagenetic alteration.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-01
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-01
    Description: We describe an integrated database on European macrobenthic fauna, developed within the framework of the European Network of Excellence MarBEF, and the data and data integration exercise that provided its content. A total of 44 datasets including 465354 distribution records from soft-bottom macrobenthic species were uploaded into the relational MacroBen database, corresponding to 22897 sampled stations from all European seas, and 7203 valid taxa. All taxonomic names were linked to the European Register of Marine Species, which was used as the taxonomic reference to standardise spelling and harmonise synonymy. An interface was created, allowing the user to explore, subselect, export and analyse the data by calculating different indices. Although the sampling techniques and intended use of the datasets varied tremendously, the integrated database proved to be robust, and an important tool for studying and understanding large-scale long-term distributions and abundances of marine benthic life. Crucial in the process was the willingness and the positive data-sharing attitude of the different data contributors. Development of a data policy that is highly aware of sensitivities and ownership issues of data providers was essential in the creation of this goodwill.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-05-28
    Description: Several epibiotic species reduce starfish (Asterias rubens) preference for the blue mussel Mytilus edulis in the Baltic. The aim of this study was to reveal whether this associational resistance was caused by structural or chemical aspects of the different epibionts. To assess structural epibiont effects, an in situ experiment was conducted with unfouled mussels and mussels equipped with artificial epibionts ('dummies') exposed to natural predation by A. rubens. The chemically inert dummies closely matched the structural properties of the locally common epibionts Balanus improvisus (barnacle), Ceramium strictum (red alga), Halichondria panicea (sponge), and Laomedea flexuosa (hydrozoan). Starfish fed indiscriminately in all treatments. Chemical effects of epibionts on the attractiveness of mussels for A. rubens were investigated by incorporating freeze-dried epibionts or mussel tissue into Phytagel pellets at natural concentrations. Starfish were allowed to choose among these structurally similar but chemically different prey items in an in vitro experiment. The predators exhibited significant preferences among the food pellets, which closely matched their preferences for corresponding natural mussel-epibiont associations. Thus, chemical aspects of epibionts appear to play a larger role in this associational resistance than do structural aspects. Implications of these indirect interactions for benthic communities are discussed.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-08-08
    Description: Large-scale environmental patterns in the Humboldt Current System (HCS) show major changes during strong El Niño episodes, leading to the mass mortality of dominant species in coastal ecosystems. Here we explore how these changes affect the life-history traits of the surf clam Mesodesma donacium. Growth and mortality rates under normal temperature and salinity were compared to those under anomalous (El Niño) higher temperature and reduced salinity. Moreover, the reproductive spatial–temporal patterns along the distribution range were studied, and their relationship to large-scale environmental variability was assessed. M. donacium is highly sensitive to temperature changes, supporting the hypothesis of temperature as the key factor leading to mass mortality events of this clam in northern populations. In contrast, this species, particularly juveniles, was remarkably tolerant to low salinity, which may be related to submarine groundwater discharge in Hornitos, northern Chile. The enhanced osmotic tolerance by juveniles may represent an adaptation of early life stages allowing settlement in vacant areas at outlets of estuarine areas. The strong seasonality in freshwater input and in upwelling strength seems to be linked to the spatial and temporal patterns in the reproductive cycle. Owing to its origin and thermal sensitivity, the expansion and dominance of M. donacium from the Pliocene/Pleistocene transition until the present seem closely linked to the establishment and development of the cold HCS. Therefore, the recurrence of warming events (particularly El Niño since at least the Holocene) has submitted this cold-water species to a continuous local extinction–recolonization process.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-08-08
    Description: The taxonomy of two sympatric surf clams Donax marincovichi Coan, 1983 and Donax obesulus Reeve, 1854, inhabiting the coastal Humboldt Current Upwelling System is revisited. Because both species are exploited by artisanal fisheries, it is essential to verify that they are indeed distinct species that have to be managed separately. In this study, both taxa were sampled across their shared distributional area and specimens were indentified according to their respective morphological characteristics. Although width/height and height/length ratios revealed significant differences within sampling areas, the two morphotypes were frequently incongruent for taxonomically important morphometric parameters. In addition, they showed no significant mitochondrial genetic differentiation within or among populations and exhibited indistinguishable sperm ultrastructure. We conclude that the two morphotypes do not represent distinct species and should be included together under D. obesulus.
    Type: Article , PeerReviewed
    Format: text
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-10-28
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-03-04
    Description: The boron isotope (δ11B) composition of marine calcifiers is considered to be one of the most reliable pH proxies, enabling us to reconstruct past ocean pH and infer on the associated changes in carbon budget involved (e.g. Gut- jahr et al. 2017). The application of the commonly used δ 11 B archives such as foraminifera or corals is however mostly limited to the Cenozoic due to insufficient preservation or incomplete geological records. Brachiopods have a promising potential for extending our knowledge on seawater pH evolution throughout the entire Phanerozoic considering their high abundance in the fossil record and its origin dating back to the early Cambrian. Moreover, their shell is composed of low-magnesium calcite, rendering brachiopods more resistant to post-depositional di-magenetic alteration of its primary chemical signal (e.g. Brand et al. 2012). Additionally, even today they present an extant and widespread taxa, allowing for an assessment of the controls on boron isotope incorporation into brachiopod calcite and possible distortions of the signal due to vital effects or other processes. We present a detailed exploration of boron isotope systematics in three different brachiopod species (Magellania venosa, Terebratella dorsata, Pajaudina atlantica) cultured under controlled laboratory settings for over a year. Our experimental setup includes a control (pH = 8.15) and two pH treatments (pH = 7.6 and 7.35), and we provide both bulk MC-ICP-MS as well as high spatial resolution SIMS data of the shell material. Our results indicate that boron incorporation is primarily driven by vital effects related to their ability to regulate calcifying fluid pH in response to ambient changes, which we further validate by in vivo microelectrode measurements (e.g. Stumpp et al. 2012). Despite internal buffering, the local pH at calcification sites systematically decreases with seawater pH, and hence is impacted by ocean acidification. This not only suggests that brachiopod shells serve as useful and conservative recorders of past ocean pH trends, but also provides new insights into mechanisms that may have enabled brachiopod survival throughout several major environmental crises in the past. Our findings have implications for past climate studies, as well as research on calcification processes and physio- logical adaptations to environmental change (e.g. the actual global ocean acidification). Brand, U., Posenato, R., Came, R., Affek, H., Angiolini, L., Azmy, K. and Farabegoli, E., 2012. The end-Permian mass extinction: A rapid volcanic CO2 and CH4-climatic catastrophe, Chem. Geol. 323, 121-144. Gutjahr M., Ridgewell A., Sexton P.F., Anagnostou E., Pearson P.N., Pälike H., Norris R.D., Thomas E., and Foster G.L., 2017. Very large release of mostly volcanic carbon during the Palaeocene-Eocene Thermal Maximum, Nature 548, 573-577. Stumpp M., Hu M.Y., Melzner F., Gutowska M., Dorey N., Himmerkus N., Holtmann W.C., Dupont S.T., Thorndyke M.C., and Bleich M. Acidified seawater impacts sea urchin larvae pH regulatory systems relevant for calcification, PNAS 44: 18192-18197.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2020-01-02
    Description: Recent and fossil brachiopod shells have a long record as biomineral archives for (palaeo)climatic and (palaeo)environmental reconstructions, as they lack or exhibit limited vital effects in their calcite shell and generally are quite resistant to diagenetic alteration. Despite this, only few studies address the issue of identifying the best or optimal part of the shell for geochemical analyses. We investigated the link between ontogeny and geochemical signatures recorded in different parts of the shell. To reach this aim, we analysed the elemental (Ca, Mg, Sr, Na) and stable isotope (δ18O, δ13C) compositions of five recent brachiopod species (Magellania venosa, Liothyrella uva, Aerothyris kerguelensis, Liothyrella neozelanica and Gyphus vitreus), spanning broad geographical and environmental ranges (Chile, Antarctica, Indian Ocean, New Zealand and Italy) and having different shell layer successions (two-layer and three-layer shells). We observed similar patterns in the ventral and dorsal valves of these two groups, but different ontogenetic trends by the two- and three-layer shells in their trace element and stable isotope records. Our investigation led us to conclude that the optimal region to sample for geochemical and isotope analyses is the middle part of the mid-section of the shell, avoiding the primary layer, posterior and anterior parts as well as the outermost part of the secondary layer in recent brachiopods. Also, the outermost and innermost rims of shells should be avoided due to diagenetic impacts on fossil brachiopods.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...