ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-06-25
    Description: We analyse simulations performed for the Chemistry-Climate Model Initiative (CCMI) to estimate the return dates of the stratospheric ozone layer from depletion caused by anthropogenic stratospheric chlorine and bromine. We consider a total of 155 simulations from 20 models, including a range of sensitivity studies which examine the impact of climate change on ozone recovery. For the control simulations (unconstrained by nudging towards analysed meteorology) there is a large spread (+/-20 DU in the global average) in the predictions of the absolute ozone column. Therefore, the model results need to be adjusted for biases against historical data. Also, the interannual variability in the model results need to be smoothed in order to provide a reasonably narrow estimate of the range of ozone return dates. Consistent with previous studies, but here for a Representative Concentration Pathway (RCP) of 6.0, these new 10 CCMI simulations project that global total column ozone will return to 1980 values in 2049 (with a 1- uncertainty of 2043-2055). At Southern Hemisphere mid-latitudes column ozone is projected to return to 1980 values in 2045 (2039-2050), and at Northern Hemisphere mid-latitudes in 2032 (2020-2044). In the Polar Regions, the return dates are 2060 (2055-2066) in the Antarctic in October and 2034 (2025-2043) in the Arctic in March. The earlier return dates in the NH reflect the larger sensitivity to dynamical changes. Our estimates of return dates are later than those presented in the 2014 Ozone Assessment by approximately 5-17 years, depending on the region, with the previous best estimates often falling outside of our uncertainty range. In the tropics only around half the models predict a return of ozone to 1980 values, at around 2040, while the other half do not reach the 1980 value. All models show a negative trend in tropical total column ozone towards the end of the 21st century. The CCMI models generally agree in their simulation of the time evolution of stratospheric chlorine and bromine, which are the main drivers of ozone loss and recovery. However, there are a few outliers which show that the multi-model mean results for ozone recovery are not as tightly constrained as possible. Throughout the stratosphere the spread of ozone return dates to 1980 values between models tends to correlate with the spread of the return of inorganic chlorine to 1980 values. In the upper stratosphere, greenhouse gas-induced cooling speeds up the return by about 10-20 years. In the lower stratosphere, and for the column, there is a more direct link in the timing of the return dates of ozone and chlorine, especially for the large Antarctic depletion. Comparisons of total column ozone between the models is affected by different predictions of the evolution of tropospheric ozone within the same scenario, presumably due to differing treatment of tropospheric chemistry. Therefore, for many scenarios, clear conclusions can only be drawn for stratospheric ozone columns rather than the total column. As noted by previous studies, the timing of ozone recovery is affected by the evolution of N2O and CH4. However, quantifying the effect in the simulations analysed here is limited by the few realisations available for these experiments compared to internal model variability. The large increase in N2O given in RCP 6.0 extends the ozone return globally by ~15 years relative to N2O fixed at 1960 abundances, mainly because it allows tropical column ozone to be depleted. The effect in extratropical latitudes is much smaller. The large increase in CH4 given in the RCP 8.5 scenario compared to RCP 6.0 also lengthens ozone return by ~15 years, again mainly through its impact in the tropics. Overall, our estimates of ozone return dates are uncertain due to both uncertainties in future scenarios, in particular of greenhouse gases, and uncertainties in models. The scenario uncertainty is small in the short term but increases with time, and becomes large by the end of the century. There are still some model-model differences related to well-known processes which affect ozone recovery. Efforts need to continue to ensure that models used for assessment purposes accurately represent stratospheric chemistry and the prescribed scenarios of ozone-depleting substances, and only those models are used to calculate return dates. For future assessments of single forcing or combined effects of CO2, CH4, and N2O on the stratospheric column ozone return dates, this work suggests that is more important to have multi-member (at least 3) ensembles for each scenario from every established participating model, rather than a large number of individual models.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN61684 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 11; 8409-8438
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-10-26
    Description: Major mid-winter stratospheric sudden warmings (SSWs) are the largest instance of wintertime variability in the Arctic stratosphere. Because SSWs are able to cause significant surface weather anomalies on intra-seasonal timescales, several previous studies have focused on their potential future change, as might be induced by anthropogenic forcings. However, a wide range of results have been reported, from a future increase in the frequency of SSWs to an actual decrease. Several factors might explain these contradictory results, notably the use of different metrics for the identification of SSWs and the impact of large climatological biases in single-model studies. To bring some clarity, we here revisit the question of future SSW changes, using an identical set of metrics applied consistently across 12 different models participating in the Chemistry-Climate Model Initiative. Our analysis reveals that no statistically significant change in the frequency of SSWs will occur over the 21st century, irrespective of the metric used for the identification of the event. Changes in other SSW characteristics - such as their duration, deceleration of the polar night jet, and the tropospheric forcing - are also assessed: again, we find no evidence of future changes over the 21st century.
    Keywords: Meteorology and Climatology
    Type: GSFC-E-DAA-TN61688 , Atmospheric Chemistry and Physics (ISSN 1680-7316) (e-ISSN 1680-7324); 18; 15; 11277-11287
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  [Poster] In: SPP-1158 Koordinationsworkshop Frankfurt, 30.09.-02.10.2015, Frankfurt, Germany .
    Publication Date: 2016-01-20
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Società Astronomica Italiana
    In:  Memorie della Societa Astronomica Italiana, 76 . pp. 868-875.
    Publication Date: 2017-03-24
    Description: Solar variability influences the earth's atmosphere on different time scales. In particular, the impact of the 11-year solar cycle is of interest as it provides the major contribution to natural climate variability. Observations show clear 11-year variations in meteorological variables such as temperature or geopotential height from the upper atmosphere down to the troposphere and the earth's surface. In this paper the mechanisms will be discussed which are assumed to be responsible for the downward transfer of the solar signal within the atmosphere. These involve radiative, dynamical and chemical processes which have been studied in detail in model simulations and will be presented here.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-03-28
    Description: The impact of 11-year solar cycle variations on stratospheric ozone (O3) is studied with the Freie Universität Berlin Climate Middle Atmosphere Model with interactive chemistry (FUB-CMAM-CHEM). To consider the effect of variations in charged particle precipitation we included an idealized NO x source in the upper mesosphere representing relativistic electron precipitation (REP). Our results suggest that the NO x source by particles and its transport from the mesosphere to the stratosphere in the polar vortex are important for the solar signal in stratospheric O3. We find a positive dipole O3 signal in the annual mean, peaking at 40–45 km at high latitudes and a negative O3 signal in the tropical lower stratosphere. This is similar to observations, but enhanced due to the idealized NO x source and at a lower altitude compared to the observed minimum. Our results imply that this negative O3 signal arises partly via chemical effects.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2018-02-20
    Description: The seasonal and interannual variation in the lower mesospheric subtropical jet (LMSJ) and their dependence on the 11-year solar cycle are studied by comparing observational data with simulations by two general circulation models. In the model simulations, a strengthening of the LMSJs is found in both hemispheres during the winter under the solar maximum condition, similar to the observation. However the model responses are substantially smaller except for one case in the southern hemisphere. It is also found that the stronger LMSJ due to an enhanced solar forcing appears during the period which follows an increasing period of interannual variation. Analysis of the observed seasonal march of the LMSJ in each year shows two different regimes of behavior. For a successful simulation, the model should realistically reproduce the observed interannual variability as well as the climatological mean.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
  • 8
    Publication Date: 2016-11-24
    Description: A model simulation of the climate during Maunder Minimum (MM) (1645–1715) was performed using the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM). A multi-year equilibrium integration with prescribed solar insolation, atmospheric composition and sea surface temperatures (SSTs) for MM conditions was compared with a present-day (PD) simulation. We find that during MM the stratosphere was significantly warmer (up to 3 K) than during PD, and dynamically more disturbed in winter. The warming is due to the dominant effect of the lower atmospheric CO2 concentration during MM, which leads to a reduced emission of long-wave radiation, and compensates the cooling due to the reduced solar irradiance. The troposphere was about 1–1.5 K cooler in the annual mean during MM. The global mean surface air temperature decreased by 0.86 K. Northern hemisphere winters were on average characterized by cooler and drier weather over the northern parts of the continents, with an increase in precipitation in the southern parts. These climate anomalies are shown to be related to a shift in the North Atlantic Oscillation (NAO) towards a predominantly low phase during MM. The simulated climate anomalies are in very good agreement with reconstructions from proxy-data. Changes in the dynamical coupling between the troposphere and stratosphere were found in the MM simulation, indicating the importance of the stratosphere for climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 111 (D6).
    Publication Date: 2017-12-12
    Description: The atmospheric response to the solar cycle has been previously investigated with the Freie Universität Berlin Climate Middle Atmosphere Model (FUB-CMAM) using prescribed spectral solar UV and ozone changes as well as prescribed equatorial, QBO-like winds. The solar signal is transferred from the upper to the lower stratosphere through a modulation of the polar night jet and the Brewer-Dobson circulation. These model experiments are further investigated here to show the transfer of the solar signal from the lower stratosphere to the troposphere and down to the surface during Northern Hemisphere winter. Analysis focuses on the transition from significant stratospheric effects in October and November to significant tropospheric effects in December and January. The results highlight the importance of stratospheric circulation changes for the troposphere. Together with the poleward-downward movement of zonal wind anomalies and enhanced equatorward planetary wave propagation, an AO-like pattern develops in the troposphere in December and January during solar maximum. In the middle of November, one third of eddy-forced tropospheric mean meridional circulation and surface pressure tendency changes can be attributed to the stratosphere, whereas most of the polar surface pressure tendency changes from the end of November through the middle of December are related to tropospheric mechanical forcing changes. The weakening of the Brewer-Dobson circulation during solar maximum leads to dynamical heating in the tropical lower stratosphere, inducing circulation changes in the tropical troposphere and down to the surface that are strongest in January. The simulated tropospheric effects are identified as indirect effects from the stratosphere because the sea surface temperatures are identical in the solar maximum and minimum experiment. These results confirm those from other simplified model studies as well as results from observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Journal of Geophysical Research: Atmospheres, 109 (D6). Art.Nr. D06101.
    Publication Date: 2017-11-28
    Description: So far, general circulation model studies have not been able to capture the magnitude and characteristics of the observed 11-year solar signal in the stratosphere satisfactorily. Here results from model experiments with the Freie Universität Berlin Climate Middle Atmosphere Model are presented that are in considerable agreement with observations. The experiments used realistic spectral solar irradiance changes, ozone changes from a two-dimensional radiative-chemical-transport model, and a relaxation toward observed equatorial wind profiles throughout the stratosphere. During Northern Hemisphere winter a realistic poleward downward propagation of the polar night jet (PNJ) anomalies, significantly weaker planetary wave activity, and a weaker mean meridional circulation under solar maximum conditions are reproduced in the model. The observed interaction between the Sun and the Quasi-Biennial Oscillation (QBO) is captured and stratospheric warmings occur preferentially in the west phase of the QBO. Only the magnitude of the anomalies during the dynamically active season improves, whereas the summer signal and the signal at low latitudes are still too weak. The results emphasize the important role of equatorial winds in achieving a more realistic solar signal by producing a more realistic wind climatology. Furthermore, they confirm recent results that equatorial winds in the upper stratosphere, the region dominated by the Semiannual Oscillation, are an important factor in determining interannual variability of the PNJ.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...