ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2019-09-23
    Description: Ocean observations in the oxygen minimum zone (OMZ) of the eastern tropical North Atlantic (ETNA) are analyzed to study decadal oxygen variability. Corresponding changes in hydrography are discussed and associated with changes in the circulation and ventilation. The data set consists of repeat shipboard hydrographic, oxygen and velocity observations along 23°W as well as of three multi-year long moored observations both acquired during the last decade. It is examined in comparison to historic hydrographic data on a decadal to multi-decadal time scale perspective. During the last decade, a strong deoxygenation was observed at depth of the deep oxycline representing a shallowing of the ETNA OMZ, while oxygen increased below in the OMZ core. Both trends are superimposed with a moderate multi-decadal oxygen decrease over the whole depth range. Water mass analysis indicates that this dipole pattern in the decadal oxygen variability is associated with a shift in the ventilation pathways having their origin either in the northern or southern hemisphere. The decadal and multi-decadal oxygen trend is implemented in the oxygen budget for the ETNA OMZ, which is based on recent estimates of oxygen consumption as well as lateral and diapycnal diffusive oxygen supply. The change in the residual of this oxygen budget derived from multi-decadal and decadal oxygen trend patterns indicates a shallower wind-driven near-surface circulation during the last decade compared to the period before. In contrast, the latitudinally alternating zonal jets that were suggested to generally weaken since the 70ies might have intensified during the last decade providing the enhanced oxygen supply at the core depth of the OMZ.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: slideshow
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-09-23
    Description: July 01 – July 28, 2013 Fortaleza (Brazil) – Walvis Bay (Namibia)
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-06-18
    Description: Nitrous oxide (N2O) is a climate relevant trace gas, and its production in the ocean generally increases under suboxic conditions. The Atlantic Ocean is well ventilated, and unlike the major oxygen minimum zones (OMZ) of the Pacific and Indian Oceans, dissolved oxygen and N2O concentrations in the Atlantic OMZ are relatively high and low, respectively. This study, however, demonstrates that recently discovered low oxygen eddies in the eastern tropical North Atlantic (ETNA) can produce N2O concentrations much higher (up to 115 nmol L−1) than those previously reported for the Atlantic Ocean, and which are within the range of the highest concentrations found in the open-ocean OMZs of the Pacific and Indian Oceans. N2O isotope and isotopomer signatures, as well as molecular genetic results, also point towards a major shift in the N2O cycling pathway in the core of the low oxygen eddy discussed here, and we report the first evidence for potential N2O cycling via the denitrification pathway in the open Atlantic Ocean. Finally, we consider the implications of low oxygen eddies for bulk, upper water column N2O at the regional scale, and point out the possible need for a reevaluation of how we view N2O cycling in the ETNA.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-06-29
    Description: We use seismic oceanography to document and analyze oceanic thermohaline finestructure across the Tyrrhenian Sea. Multichannel seismic (MCS) reflection data were acquired during the MEDiterranean OCcidental survey in April-May 2010. We deployed along-track expendable bathythermograph probes simultaneous with MCS acquisition. At nearby locations we gathered conductivity-temperature-depth data. An autonomous glider survey added in-situ measurements of oceanic properties. The seismic reflectivity clearly delineates thermohaline finestructure in the upper 2,000 m of the water column, indicating the interfaces between Atlantic Water/Winter Intermediate Water, Levantine Intermediate Water, and Tyrrhenian Deep Water. We observe the Northern Tyrrhenian Anticyclone, a near-surface meso-scale eddy, plus laterally and vertically extensive thermohaline staircases. Using MCS we are able to fully image the anticyclone to a depth of 800 m and to confirm the horizontal continuity of the thermohaline staircases of more than 200 km. The staircases show the clearest step-like gradients in the center of the basin while they become more diffuse towards the periphery and bottom, where impedance gradients become too small to be detected by MCS. We quantify the internal wave field and find it to be weak in the region of the eddy and in the center of the staircases, while it is stronger near the coastlines. Our results indicate this is because of the influence of the boundary currents, which disrupt the formation of staircases by preventing diffusive convection. In the interior of the basin the staircases are clearer and the internal wave field weaker, suggesting that other mixing processes such as double-diffusion prevail. Synopsis We studied the internal temperature and salinity structure of the Tyrrhenian Sea (Mediterranean) using the multichannel seismic reflection method (the same used in the hydrocarbon industry). Low frequency sound (seismic) waves are produced at the surface with an explosive air source and recorded by a towed cable containing hydrophones (underwater microphones). The data are processed to reveal 'stratigraphy' that result from contrasts in density that are themselves caused by changes in temperature and salinity. In this way we can map ocean circulation in two-dimensions. We also deployed in situ oceanographic probes to measure temperature and salinity in order to corroborate and optimize the processing of the seismic data. We then quantified the internal gravity wave field by tracking the peaks of seismic trace wavelets. Our results show that the interior of the Tyrrhenian Sea is largely isolated from internal waves that are generated by a large cyclonic boundary current that contains waters from the Atlantic ocean and other parts of the Mediterranean. This isolation allows the thermohaline finestructure to form, where small scale vertical mixing processes are at play. Understanding these mixing processes will aid researchers study global ocean circulation and to add constraints that can help improve climate models.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: In early 2017 sea surface temperatures in the far eastern tropical Pacific were anomalously high while central Pacific SST anomalies remained neutral or negative. Associated to this anomaly pattern were strong anomalous precipitation events in northern Peru causing severe flooding. During April and May 2017 the near-coastal temperature anomalies declined. In-situ observations from four consecutive research cruises and a glider survey collected between 12°S and 14°S off the coast of Peru are used to describe the eastern boundary circulation and hydrography during declining surface temperature anomalies. The observational data base consists of ship-board hydrography, oxygen and upper-ocean velocity observations, hydrography from glider surveys and velocity time series from mooring deployments. Hydrography at 12°S shows a pronounced warm anomaly near the surface and on the shelf where the full water column warmed by more than 2°C with respect to climatology. Further offshore, a weaker warming was observed below the surface layer as well. The oxycline was displaced downwards and well-oxygenated waters occupied the upper 50m of the water column. Poleward velocities of the Peru-Chile Undercurrent strongly intensified in late-April and May reaching velocities above 50 cm s-1. During this period, near-surface temperature anomalies decreased but subsurface temperatures on the shelf remained high. The forcing of the observed variability of the eastern boundary circulation and of the hydrography during the late phase of the “Coastal El Niño” event is investigated and related to local and remote processes.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Talk] In: Good Hope for Earth Science - 2017 Joint IAPSO-IAMAS-IAGA Assembly, 27.08.-01.09.2017, Cape Town, South Africa .
    Publication Date: 2019-09-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-09-23
    Description: The oxygen minimum zone (OMZ) of the tropical North East Atlantic (TNEA) is located between the oxygen-rich equatorial region and the Cape Verde Frontal Zone at about 20°N in a depth range of 300 – 700 m. Its horizontal extent is predominantly defined by the North Equatorial Current and by the equatorial zonal current system ventilating the region to the north and south of the OMZ, respectively. The interior of the OMZ is characterized by a sluggish flow regime, where mesoscale eddies play a major role in the ventilation. In this study we focus on the oxygen variability in the TNEA as well as the eddy driven lateral ventilation of the TNEA OMZ across its southern boundary. During recent years an intense measurement program was executed along 23°W cutting meridionally through the TNEA OMZ. Hydrographic and velocity data has been acquired from ship sections and moorings, together covering the latitude range between 6°S and 14°N with particularly high meridional resolution of shipboard and high temporal resolution of moored observations. Based on shipboard data we derived a meridional section of oxygen variance, which reveals numerous local maxima of oxygen variability. Exemplary, strong oxygen variability is observed at the upper (300m, 5° - 12°N) and the southern boundary (400m - 700m, 5°N - 8°N) of the OMZ, whereas the interior of the OMZ is characterized by weak variability. An application of the extended Osborn-Cox model shows that the strong oxygen variability at the southern boundary is mainly generated by mesoscale eddies. The strong variability at the upper boundary is generated by mesoscale eddies as well as microscale turbulence. We apply two methods to estimate the meridional oxygen flux: 1) a flux gradient parameterization and 2) a correlation of oxygen and velocity mooring time series. From the analysis of the 5°N mooring data we find a northward oxygen flux directed towards the OMZ at its core depth, that is mainly due to variability of mesoscale eddy motions (10 - 50 days). The magnitude of the oxygen flux is well represented by the flux gradient parameterization, which moreover reveals an overall northward oxygen flux from the southern boundary to the centre of the OMZ. We further estimate the oxygen supply (divergence of oxygen flux) by mesoscale eddies and discuss its contribution to the oxygen budget of the TNEA OMZ.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-05-06
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-04-24
    Type: Conference or Workshop Item , NonPeerReviewed , info:eu-repo/semantics/conferenceObject
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2021-05-19
    Description: Localized open-ocean low-oxygen “dead zones” in the eastern tropical North Atlantic are recently discovered ocean features that can develop in dynamically isolated water masses within cyclonic eddies (CE) and anticyclonic mode-water eddies (ACME). Analysis of a comprehensive oxygen dataset obtained from gliders, moorings, research vessels and Argo floats reveals that “dead-zone” eddies are found in surprisingly high numbers and in a large area from about 4 to 22° N, from the shelf at the eastern boundary to 38° W. In total, 173 profiles with oxygen concentrations below the minimum background concentration of 40 µmol kg−1 could be associated with 27 independent eddies (10 CEs; 17 ACMEs) over a period of 10 years. Lowest oxygen concentrations in CEs are less than 10 µmol kg−1 while in ACMEs even suboxic (〈 1 µmol kg−1) levels are observed. The oxygen minimum in the eddies is located at shallow depth from 50 to 150 m with a mean depth of 80 m. Compared to the surrounding waters, the mean oxygen anomaly in the core depth range (50 and 150 m) for CEs (ACMEs) is −38 (−79) µmol kg−1. North of 12° N, the oxygen-depleted eddies carry anomalously low-salinity water of South Atlantic origin from the eastern boundary upwelling region into the open ocean. Here water mass properties and satellite eddy tracking both point to an eddy generation near the eastern boundary. In contrast, the oxygen-depleted eddies south of 12° N carry weak hydrographic anomalies in their cores and seem to be generated in the open ocean away from the boundary. In both regions a decrease in oxygen from east to west is identified supporting the en-route creation of the low-oxygen core through a combination of high productivity in the eddy surface waters and an isolation of the eddy cores with respect to lateral oxygen supply. Indeed, eddies of both types feature a cold sea surface temperature anomaly and enhanced chlorophyll concentrations in their center. The low-oxygen core depth in the eddies aligns with the depth of the shallow oxygen minimum zone of the eastern tropical North Atlantic. Averaged over the whole area an oxygen reduction of 7 µmol kg−1 in the depth range of 50 to 150 m (peak reduction is 16 µmol kg−1 at 100 m depth) can be associated with the dispersion of the eddies. Thus the locally increased oxygen consumption within the eddy cores enhances the total oxygen consumption in the open eastern tropical North Atlantic Ocean and seems to be an contributor to the formation of the shallow oxygen minimum zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...