ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (9)
Collection
Years
  • 1
    Publication Date: 2018-03-09
    Description: An interlaboratory study of Mg/Ca and Sr/Ca ratios in three commercially available carbonate reference materials (BAM RS3, CMSI 1767, and ECRM 752-1) was performed with the participation of 25 laboratories that determine foraminiferal Mg/Ca ratios worldwide. These reference materials containing Mg/Ca in the range of foraminiferal calcite (0.8 mmol/mol to 6 mmol/mol) were circulated with a dissolution protocol for analysis. Participants were asked to make replicate dissolutions of the powdered samples and to analyze them using the instruments and calibration standards routinely used in their laboratories. Statistical analysis was performed in accordance with the International Standardization Organization standard 5725, which is based on the analysis of variance (ANOVA) technique. Repeatability (RSDr%), an indicator of intralaboratory precision, for Mg/Ca determinations in solutions after centrifuging increased with decreasing Mg/Ca, ranging from 0.78% at Mg/Ca = 5.56 mmol/mol to 1.15% at Mg/Ca = 0.79 mmol/mol. Reproducibility (RSDR%), an indicator of the interlaboratory method precision, for Mg/Ca determinations in centrifuged solutions was noticeably worse than repeatability, ranging from 4.5% at Mg/Ca = 5.56 mmol/mol to 8.7% at Mg/Ca = 0.79 mmol/mol. Results of this study show that interlaboratory variability is dominated by inconsistencies among instrument calibrations and highlight the need to improve interlaboratory compatibility. Additionally, the study confirmed the suitability of these solid standards as reference materials for foraminiferal Mg/Ca (and Sr/Ca) determinations, provided that appropriate procedures are adopted to minimize and to monitor possible contamination from silicate mineral phases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geophysical Research Letters, 36 . L14704.
    Publication Date: 2017-10-13
    Description: The collapse of the Laurentide Ice Sheet over Hudson Bay ∼8.47 ka allowed the rapid drainage of glacial Lake Agassiz into the Labrador Sea, an event identified as causing a reduction in Atlantic meridional overturning circulation (AMOC) and the 8.2 ka cold event. Atmosphere-ocean models simulations based on this forcing, however, fail to reproduce several characteristics of this event, particularly its duration. Here we use planktonic foraminifera U/Ca records to document the routing of western Canadian Plains runoff that accompanied ice-sheet collapse. Geochemical modeling of the ∼7 nmol/mol increase in U/Ca at the opening of Hudson Bay indicates an increase in freshwater discharge of 0.13 ± 0.03 Sverdrups (106 m3 s−1) from routing, a sufficient magnitude to cause an AMOC reduction. We suggest that this routing event suppressed AMOC strength for several centuries after the drainage of Lake Agassiz, explaining multi-centennial climate anomalies associated with the 8.2 ka cold event.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 239 . pp. 79-97.
    Publication Date: 2017-01-19
    Description: Are the rare earth elements (REEs) in foraminifera a valuable proxy for use in paleoceanographic and climate change studies? In order to investigate this, we attempted a comprehensive study of REEs in planktonic and benthic foraminifera. Several different cleaning protocols were tested. Although the hydroxylamine used to clean all foraminifera in this study removes an unidentified source of REE contamination, it seems to remobilize metal oxides that are otherwise unaffected in flow-through dissolution. The calculated REE distribution coefficients, KD(REE)s, are between 100 and 500 for both planktonic and benthic foraminifera. These KDs are high compared to other elements in biogenic calcite but can be explained through a general model of element incorporation during foraminiferal calcification. From data taken from eight core tops in the southeast Pacific, we conclude that the REEs in planktonic foraminifera are, indeed, useful as a proxy for upper ocean water mass and mixed layer biogenic productivity. Alternatively, the REEs in benthic foraminifera are useful as a proxy for carbon flux to the sea floor. These proxies should be robust down core unless the sediments have undergone anoxic diagenesis, which stabilizes Fe carbonate thus overprinting the primary REE signature. However, it is clear from REE distributions in foraminiferal tests if anoxic conditions have occurred.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-11-15
    Description: During the expeditions ANT-XV/2 with R/V Polarstern in 1997/98 and NBP 99-04 with R/V IB N.B. Palmer in 1999, the first samples of hydrothermally influenced sediments of Bransfield Strait were obtained at Hook Ridge, a volcanic edifice in the Central Basin of the Strait. The vent sites are characterized by white siliceous crusts on top of the sediment layer and temperatures measured immediately on deck are up to 48.5°C. The shallow depth of these vent sites (1050 m) particularly controls the chemistry of the pore fluids that are enriched in silica and sulfide and show low pH values. Chloride is depleted up to 20% and the calculated hydrothermal endmember concentration is in the range of 1–84 mM. Since other mechanisms for Cl depletion can be ruled out clearly, the composition of this fluid is attributed to phase separation. While the Cl-depleted fluid is emanating at Hook Ridge, a Cl-enriched fluid can be identified in the adjacent King George Basin. Using a p,x diagram the two corresponding endmember concentrations reveal that the phase separation takes place at subcritical conditions (total depth: ∼2500 m), probably along the whole volcanic edifice
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 10 . Q03009.
    Publication Date: 2018-03-14
    Description: Here we present the first downcore results for a new paleoproxy, the Mn/Ca ratio of foraminiferal calcite, applied to sediment accumulated in the extreme Eastern Tropical North Pacific (ETNP) over the last 30,000 years. The Mn/Ca results are compared to oxygen isotopes and sea surface temperature calculated from Mg/Ca. We determined metal ratios using flow-through time-resolved analysis to minimize the effects of secondary mineralization. The foraminiferal species used for this study calcify at different depths. Core top ratios of these variant species change in proportion to the concentration of dissolved manganese in the water column at the depth of calcification. Since terrestrial input and oxidation reduction reactions control the levels of dissolved Mn in the oceans today, it therefore should be possible to use the Mn/Ca ratios of foraminifera as a proxy for these processes in the past. Mn/Ca of a mixed-layer species (G. ruber) suggest that dissolved terrestrial input to the surface waters of the ETNP during the last glacial maximum was lower than today but began to increase with initial sea level rise and reached a maximum at 15 ka B.P. before coming down to present-day levels at the end of sea level rise in the mid-Holocene (7–5 ka). Ratios of a deeper calcifying species (N. dutertrei) mimic those of G. ruber over this same time period, consistent with shoaling of the 18°C thermocline. Mn/Ca of a benthic species (U. peregrina) does not show a maximum at 15 ka, suggesting that Mn was efficiently remineralized in the water column during deglaciation. Assuming that the period from the last glacial until the mid-Holocene was a time of increased productivity, as elevated Mn might imply, the oxygen minimum zone (OMZ) was at least as well developed during deglaciation as it is today. Expansion of the OMZ may have contributed to the Mn/Ca trends we observe through time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: Natural gas hydrates: occurrence, distribution, and detection. , ed. by Paull, C. Geophysical Monograph Series, 124 . AGU (American Geophysical Union), Washington, DC, pp. 87-99.
    Publication Date: 2017-06-27
    Type: Book chapter , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 21 (PA3008).
    Publication Date: 2017-05-10
    Description: Multiproxy geologic records of δ18O and Mg/Ca in fossil foraminifera from sediments under the Eastern Pacific Warm Pool (EPWP) region west of Central America document variations in upper ocean temperature, pycnocline strength, and salinity (i.e., net precipitation) over the past 30 kyr. Although evident in the paleotemperature record, there is no glacial-interglacial difference in paleosalinity, suggesting that tropical hydrologic changes do not respond passively to high-latitude ice sheets and oceans. Millennial variations in paleosalinity with amplitudes as high as ∼4 practical salinity units occur with a dominant period of ∼3–5 ky during the glacial/deglacial interval and ∼1.0–1.5 ky during the Holocene. The amplitude of the EPWP paleosalinity changes greatly exceeds that of published Caribbean and western tropical Pacific paleosalinity records. EPWP paleosalinity changes correspond to millennial-scale climate changes in the surface and deep Atlantic and the high northern latitudes, with generally higher (lower) paleosalinity during cold (warm) events. In addition to Intertropical Convergence Zone (ITCZ) dynamics, which play an important role in tropical hydrologic variability, changes in Atlantic-Pacific moisture transport, which is closely linked to ITCZ dynamics, may also contribute to hydrologic variations in the EPWP. Calculations of interbasin salinity average and interbasin salinity contrast between the EPWP and the Caribbean help differentiate long-term changes in mean ITCZ position and Atlantic-Pacific moisture transport, respectively.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2016-11-15
    Description: We carried out a search for hydrothermal vents in the Central Basin of Bransfield Strait, Antarctica. The ZAPS (zero angle photon spectrometer) chemical sensor and instrument package (Oregon State University), OFOS (ocean-floor observation system) camera sled and TVG (TV-grab) (GEOMAR) were used to explore the water column and underlying seafloor. These operations were supplemented with a series of dredges. Hydrothermal plumes over Hook Ridge at the eastern end of the basin are confined to the E ridge crest and SE flank. The plumes are complex and sometimes contain two turbidity maxima one widespread feature centered at 1150 m and a smaller, more localized but broad maximum at 600–800 m. We traced the source of the shallower plume to a sunken crater near the ridge crest using sensors on the ZAPS instrument package. Subsequently two TV-grabs from the crater brought back hot, soupy sediment (42–49°C) overlain by hard, siliceous crusts and underlain by a thick layer of volcanic ash. We also recovered chimney fragments whose texture and mineralogy indicate venting temperatures in excess of 250°C. Native sulfur and Fe-sulfides occur in fractures and porous layers in sediment from throughout the area. Pore water data from the crater site are consistent with venting into a thin sediment layer and indicate phase separation of fluids beneath Hook Ridge. The source of the deeper plumes at Hook Ridge has yet to be located. We also explored a series of three parallel volcanic ridges west of Hook Ridge called Three Sisters. We detected water column anomalies indicative of venting with the ZAPS package and recovered hydrothermal barites and sulfides from Middle Sister. We spent considerable time photographing Middle Sister and Hook Ridge but did not identify classic vent fauna at either location. We either missed small areas with our photography or typical MOR vent fauna are absent at these sites.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2017-02-17
    Description: The Mn/Ca ratio of the biogenic calcite preserved in deep-sea sediments has potential as a proxy for terrestrial input and other parameters related to the surface ocean and chemical redox. The underlying basis for this potential lies in features of the Mn cycle in the oceans, which are well known. The use of Mn and other elements as paleoproxies is complicated, however, by the formation of diagenetic carbonates. These overgrowths cause SST from Mg/Ca to be overestimated and obscure primary trace element signatures. Flo- thru addresses these issues by sorting phases by their susceptibility to dissolution and allowing us to examine sample homogeneity on a fine scale. This study uses a multi-proxy, multi-species approach to investigate changes in SST and Mn/Ca from 0-30 ky BP in the Panama Basin. We will show that the flo-thru compositions of surface-dwelling G. ruber and thermocline-dwelling N. dutertrei are consistent with their ecology. We will then contrast relative changes in the compositions of these species through time to develop a picture of systematic changes in surface water from the LGM to present. Preliminary results indicate less terrigenous input, greater carbon rain, and a deeper mixed layer in the Panama Basin at the LGM relative to present.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...