ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (21)
  • 1
    Publication Date: 2020-02-06
    Description: Highlights • Crustal structure of Walvis Ridge reveals high seismic velocities in the lower crust intruding the African continent. • This modified crust is localized to approx. 100 × 100 km within the continent. • No indication for a large plume head observed The opening of the South Atlantic is a classical example for a plume related continental breakup. Flood basalts are present on both conjugate margins as well as aseismic ridges connecting them with the current plume location at Tristan da Cunha. To determine the effect of the proposed plume head on the continental crust, we acquired wide-angle seismic data at the junction of the Walvis Ridge with the African continent and modelled the P-wave velocity structure in a forward approach. The profile extends 430. km along the ridge and continues onshore to a length of 720. km. Crustal velocities beneath the Walvis Ridge vary between 5.5. km/s and 7.0. km/s, a typical range for oceanic crust. The crustal thickness of 22. km, however, is approximately three times larger than of normal oceanic crust. The continent-ocean transition is characterized by 30. km thick crust with strong lateral velocity variations in the upper crust and a high-velocity lower crust (HVLC), where velocities reach up to 7.5. km/s. The HVLC is 100 to 130. km wider at the Walvis Ridge than it is farther south, and impinges onto the continental crust of the Kaoko fold belt. Such high seismic velocities indicate Mg-rich igneous material intruded into the continental crust during the initial rifting stage. However, the remaining continental crust seems unaffected by intrusions and the root of the 40. km-thick crust of the Kaoko belt is not thermally abraded. We conclude that the plume head did not modify the continental crust on a large scale, but caused rather local effects. Thus, it seems unlikely that a plume drove or initiated the breakup process. We further propose that the plume already existed underneath the continent prior to the breakup, and ponded melt erupted at emerging rift structures providing the magma for continental flood basalts.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Elsevier
    In:  Tectonophysics, 176 (1-2). pp. 25-41.
    Publication Date: 2018-01-17
    Description: A seismic refraction profile across Langeland (Denmark) obtained from land stations recording airgun shots allowed to resolve upper crustal velocities to a depth of 8 km. The profile traverses the proposed Caledonian Deformation Front and the Ringkoebing-Fyn High. The Ringkoebing-Fyn High is about 10 km wide and the top basement lies less than 2 km below the surface. Basement velocities as high as 6.4 km/s, at depths between 6 and 8 km, can be best explained by compositional changes between adjoining basement units to the north and south. South of the Ringkoebing-Fyn High another high velocity basement unit is encountered and most probably represents a basement affected by the Caledonian orogeny. Along this profile on Langeland the positions of the Caledonian Deformation Front and the northern limit of the Zechstein deposits coincide.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    In:  [Talk] In: 41. Sitzung der AG Seismologie, 15.-17.09.2015, Wildbad-Kreuth, Germany .
    Publication Date: 2016-03-10
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-09-23
    Description: Deep-water agglutinated foraminifera on the crest of the Hovgârd Ridge, west of Spitsbergen, consist mostly of large tubular astrorhizids. At a boxcore station collected from the crest of Hovgârd Ridge at a water depth of 1169 m, the sediment surface was covered with patches of large (1 mm diameter) tubular forms, belonging mostly to the species Astrorhiza crassatina Brady, with smaller numbers of Saccorhiza, Hyperammina, and Psammosiphonella. Non-tubutar species consisted mainly of opportunistic forms, such as Psammosphaera and Reophax. The presence of large suspension-feeding tubular genera as well as opportunistic forms point to the presence of deep currents at this locality that are strong enough to disturb the benthic fauna. This is confirmed by data obtained from sediment echosounding, which exhibit lateral variation in relative sedimentation rates within the Pleistocene sedimentary drape covering the ridge, indicative of winnowing in a south-easterly direction.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Talk] In: AGU 2015, 14. – 18.12.15, San Francisco, USA .
    Publication Date: 2016-01-08
    Description: Tristan da Cunha is a volcanic island in the South Atlantic located very close to the Mid-Atlantic Ridge. Generally, it is accepted to be the location of a mantle plume, which has been active at least since the breakup of Gondwana at 130 Ma, the time when the Paraná/Etendeka flood basalts were emplaced. Furthermore, it is associated with the formation of the Walvis Ridge and the Rio Grande Rise, and therefore it’s one of the key examples of a hot spot track linking a flood basalt province to an active ocean island volcano. However, global tomography models are contradicting about the origin of Tristan da Cunha: Whether it is a deep mantle plume or caused by shallow plate tectonics. To gain a better understanding, we deployed 24 broadband ocean-bottom seismometers, 26 ocean-bottom electromagnetic stations and 2 seismological land stations in January 2012 with the German research vessel Maria S. Merian. We acquired continuous seismological data for one year and recovered the instruments in January 2013. We use cross-correlated travel time residuals of teleseismic earthquakes to perform a finite-frequency tomography to resolve the P wave velocity upper mantle structure beneath the island. Here we show our preliminary results of the 3-D velocity perturbations in the upper mantle: We do not image a plume-like structure directly beneath the island. Instead we observe a low velocity region in the southwest of our array that might be related to a local mantle upwelling (mantle plume). Additionally we show the local seismicity in the Tristan da Cunha region. Chen et al. and Baba et al. will present the first results on the magnetotelluric experiment and Ryberg et al. will present the crustal structure around the Tristan da Cunha hotspot.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  [Talk] In: AGU 2015, 14. – 18.12.15, San Francisco, USA .
    Publication Date: 2016-02-04
    Description: According to classical plume theory, the Tristan da Cunha hotspot is thought to have played a major role in the rifting of the South Atlantic margins and the creation of the aseismic Walvis Ridge during and after the breakup of the South Atlantic. Between February 2012 and January 2013 a network of 24 broadband ocean-bottom seismometers was in operation around the volcanic archipelago of Tristan da Cunha. Ambient noise data from the OBS and a seismic station on Nightingale Island were used to constrain the crustal and uppermost structure around the island. From the vertical and hydrophone recordings of more than 300 days we could reconstruct the ambient noise Green's functions by cross-correlation. The dispersion curves of Rayleigh/Scholte waves could be derived from the cross-correlations in the period range from 2 to 32 seconds. Group velocity maps were determined for each individual period using travel time tomography. These group velocity maps were converted to depth by dispersion curve inversion to construct a 3D S-wave velocity model of the crust and uppermost mantle in the region. This model shows a strong velocity anomaly beneath the Tristan da Cunha archipelago. The influence of the water depth on the inversion is discussed.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    GSA, Geological Society of America
    In:  Geology, 43 (10). pp. 931-934.
    Publication Date: 2017-05-17
    Description: Upwelling hot mantle plumes are thought to disintegrate continental lithosphere and are considered to be drivers of active continental breakup. The formation of the Walvis Ridge during the opening of the South Atlantic is related to a putative plume-induced breakup. We investigated the crustal structure of the Walvis Ridge (southeast Atlantic Ocean) at its intersection with the continental margin and searched for anomalies related to the possible plume head. The overall structure we identify suggests that no broad plume head existed during opening of the South Atlantic and anomalous mantle melting occurred only locally. We therefore question the importance of a plume head as a driver of continental breakup and further speculate that the hotspot was present before the rifting, leaving a track of kimberlites in the African craton.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Talk] In: EGU General Assembly 2016, 17.-22.04.2016, Vienna, Austria .
    Publication Date: 2016-02-04
    Description: According to classical plume theory, the Tristan da Cunha hotspot is thought to have played a major role in the rifting of the South Atlantic margins and the creation of the aseismic Walvis Ridge during and after the breakup of the South Atlantic. Between February 2012 and January 2013 a network of 24 broadband ocean-bottom seismometers was in operation around the volcanic archipelago of Tristan da Cunha. Ambient noise data from the OBS and a seismic station on Nightingale Island were used to constrain the crustal and uppermost structure around the island. From the vertical and hydrophone recordings of more than 300 days we could reconstruct the ambient noise Green's functions by cross-correlation. The dispersion curves of Rayleigh/Scholte waves could be derived from the cross-correlations in the period range from 2 to 32 seconds. Group velocity maps were determined for each individual period using travel time tomography. These group velocity maps were converted to depth by dispersion curve inversion to construct a 3D S-wave velocity model of the crust and uppermost mantle in the region. This model shows a strong velocity anomaly beneath the Tristan da Cunha archipelago. The influence of the water depth on the inversion is discussed.
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Geochemistry, Geophysics, Geosystems, 7 (Q06007).
    Publication Date: 2017-11-07
    Description: The extent of the Yermak Slide has been revised on the basis of new acoustic and detailed bathymetric data. The true geometry, with an affected area of at least 10,000 km2 and more than 2400 km3 of involved sedimentary material, puts the Yermak Slide among the largest exposed submarine slides worldwide, comparable to the Storegga Slide off central Norway. Details from the side's internal structure give evidence for one main slide event during MIS 3 followed by repeated minor events. The timing coincides with the transition of the Kapp Ekholm Interstadial into Glaciation G of Svalbard (Mangerud et al., 1998) and the buildup phase of the Svalbard-Barents Sea Ice Sheet. Thus the slide occurred during a period of falling sea level, increasing ice volume, and, presumably, increasing glaciotectonic activity. The side's geometry and internal physical appearance point to a tectonically induced partial shelf collapse.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...