ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Keywords: Spacecraft Propulsion and Power
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-13
    Description: OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This manuscript describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at Level 100 A/2 and less than 180 nanograms per square centimeter of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication between scientists, engineers, managers, and technicians.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN41800 , International Conference on the Origin of Life; Jul 16, 2018 - Jul 21, 2018; San Diego, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-26
    Description: OSIRIS-REx will return pristine samples of carbonaceous asteroid Bennu. This article describes how pristine was defined based on expectations of Bennu and on a realistic understanding of what is achievable with a constrained schedule and budget, and how that definition flowed to requirements and implementation. To return a pristine sample, the OSIRIS-REx spacecraft sampling hardware was maintained at level 100 A/2 and less than 180 ng/cm(exp 2) of amino acids and hydrazine on the sampler head through precision cleaning, control of materials, and vigilance. Contamination is further characterized via witness material exposed to the spacecraft assembly and testing environment as well as in space. This characterization provided knowledge of the expected background and will be used in conjunction with archived spacecraft components for comparison with the samples when they are delivered to Earth for analysis. Most of all, the cleanliness of the OSIRIS-REx spacecraft was achieved through communication among scientists, engineers, managers, and technicians.
    Keywords: Lunar and Planetary Science and Exploration
    Type: GSFC-E-DAA-TN50790 , Space Science Review (ISSN 0038-6308) (e-ISSN 1572-9672); 214; 1; 19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: Chemical and biological sensor technologies have advanced rapidly in the past five years. Sensors that require low power and operate for multiple years are now available for oxygen, nitrate, and a variety of bio-optical properties that serve as proxies for important components of the carbon cycle (e.g., particulate organic carbon). These sensors have all been deployed successfully for long periods, in some cases more than three years, on platforms such as profiling floats or gliders. Technologies for pH, pCO2, and particulate inorganic carbon are maturing rapidly as well. These sensors could serve as the enabling technology for a global biogeochemical observing system that might operate on a scale comparable to the current Argo array. Here, we review the scientific motivation and the prospects for a global observing system for ocean biogeochemistry.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-03-05
    Description: Synechococcus is an abundant marine cyanobacterial genus composed of different populations that vary physiologically. Synechococcus narB gene sequences (encoding for nitrate reductase in cyanobacteria) obtained previously from isolates and the environment (e.g., North Pacific Gyre Station ALOHA, Hawaii or Monterey Bay, CA, USA) were used to develop quantitative PCR (qPCR) assays. These qPCR assays were used to quantify populations from specific narB phylogenetic clades across the California Current System (CCS), a region composed of dynamic zones between a coastal-upwelling zone and the oligotrophic Pacific Ocean. Targeted populations (narB subgroups) had different biogeographic patterns across the CCS, which appear to be driven by environmental conditions. Subgroups CC1, DC1, and DC2 were abundant in coastal-upwelling to coastal-transition zone waters with relatively high to intermediate ammonium, nitrate, and chl. a concentrations. Subgroups AC1 and FC1 were most abundant in coastal-transition zone waters with intermediate nutrient concentrations. EO1 and GO1 were most abundant at different depths of oligotrophic open-ocean waters (either in the upper mixed layer or just below). EO1, AC1, and FC1 distributions differed from other narB subgroups and likely possess unique ecologies enabling them to be most abundant in waters between coastal and open-ocean waters. Different CCS zones possessed distinct Synechococcus communities. Core California current water possessed low numbers of narB subgroups relative to counted Synechococcus cells, and coastal-transition waters contained high abundances of Synechococcus cells and total number of narB subgroups. The presented biogeographic data provides insight on the distributions and ecologies of Synechococcus present in an eastern boundary current system. © 2011 Paerl, Johnson, Welsh, Worden, Chavez and Zehr.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-05
    Description: Nitrite (NO2−) is a substrate for both oxidative and reductive microbial metabolism. NO2− accumulates at the base of the euphotic zone in oxygenated, stratified open-ocean water columns, forming a feature known as the primary nitrite maximum (PNM). Potential pathways of NO2− production include the oxidation of ammonia (NH3) by ammonia-oxidizing bacteria and archaea as well as assimilatory nitrate (NO3−) reduction by phytoplankton and heterotrophic bacteria. Measurements of NH3 oxidation and NO3− reduction to NO2− were conducted at two stations in the central California Current in the eastern North Pacific to determine the relative contributions of these processes to NO2− production in the PNM. Sensitive (〈 10 nmol L−1), precise measurements of NH4+ and NO2− indicated a persistent NH4+ maximum overlying the PNM at every station, with concentrations as high as 1.5 μmol L−1. Within and just below the PNM, NH3 oxidation was the dominant NO2− producing process, with rates of NH3 oxidation to NO2− of up to 31 nmol L-1 d-1, coinciding with high abundances of ammonia-oxidizing archaea. Though little NO2− production from NO3− was detected, potentially nitrate-reducing phytoplankton (photosynthetic picoeukaryotes, 〈i〉Synechococcus〈/i〉, and 〈i〉Prochlorococcus〈/i〉) were present at the depth of the PNM. Rates of NO2− production from NO3− were highest within the upper mixed layer (4.6 nmol L-1 d-1) but were either below detection limits or 10 times lower than NH3 oxidation rates around the PNM. One-dimensional modeling of water column NO2− production agreed with production determined from 15N bottle incubations within the PNM, but a modeled net biological sink for NO2− just below the PNM was not captured in the incubations. Residence time estimates of NO2− within the PNM ranged from 18 to 470 days at the mesotrophic station and was 40 days at the oligotrophic station. Our results suggest the PNM is a dynamic, rather than relict, feature with a source term dominated by ammonia oxidation. © 2013 Author(s).
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...