ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (1)
Collection
Years
  • 1
    Publication Date: 2019-07-17
    Description: An optimized long-wavelength two-color Quantum Well Infrared Photodetector (QWIP) device structure has been designed. This device structure was grown on a three inch semi-insulating GaAs substrate by molecular beam epitaxy (MBE). This wafer was processed into several 640x486 format monolithically integrated 8-9 and 14-15 micron two color (or dual wavelength) QWIP focal plane arrays (FPAs). These FPAs were then hybridized to 640x486 silicon CMOS readout multiplexers. A thinned (i.e., substrate removed) FPA hybrid was integrated into a liquid helium cooled dewar to perform electrical and optical characterization and to demonstrate simultaneous two-color imagery. The 8-9 micron detectors in the FPA have shown background limited performance (BLIP) at 70 K operating temperature, at 300 K background with f/2 cold stop. The 14-15 micron detectors of the FPA have reached BLIP at 40 K operating temperature at the same background conditions. In this presentation we discuss the performance of this long-wavelength dualband QWIP FPA in quantum efficiency, detectivity, noise equivalent temperature difference (NEAT), uniformity, and operability.
    Keywords: Instrumentation and Photography
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...