ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2021-02-08
    Description: The end-Triassic is characterized by one of the largest mass extinctions in the Phanerozoic, coinciding with major carbon cycle perturbations and global warming. It has been suggested that the environmental crisis is linked to widespread sill intrusions during magmatism associated with the Central Atlantic Magmatic Province (CAMP). Sub-volcanic sills are abundant in two of the largest onshore sedimentary basins in Brazil, the Amazonas and Solimões basins, where they comprise up to 20% of the stratigraphy. These basins contain extensive deposits of carbonate and evaporite, in addition to organic-rich shales and major hydrocarbon reservoirs. Here we show that large scale volatile generation followed sill emplacement in these lithologies. Thermal modeling demonstrates that contact metamorphism in the two basins could have generated 88,000 Gt CO2. In order to constrain the timing of gas generation, zircon from two sills has been dated by the U-Pb CA-ID-TIMS method, resulting in 206Pb/238U dates of 201.477 ± 0.062 Ma and 201.470 ± 0.089 Ma. Our findings demonstrate synchronicity between the intrusive phase and the end-Triassic mass extinction, and provide a quantified degassing scenario for one of the most dramatic time periods in the history of Earth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    Copernicus Publications (EGU)
    In:  Geoscientific Model Development, 11 (1). pp. 43-60.
    Publication Date: 2021-03-19
    Description: Igneous intrusions in sedimentary basins may have a profound effect on the thermal structure and physical properties of the hosting sedimentary rocks. These include mechanical effects such as deformation and uplift of sedimentary layers, generation of overpressure, mineral reactions and porosity evolution, and fracturing and vent formation following devolatilization reactions and the generation of CO2 and CH4. The gas generation and subsequent migration and venting may have contributed to several of the past climatic changes such as the end-Permian event and the Paleocene-Eocene Thermal Maximum. Additionally, the generation and expulsion of hydrocarbons and cracking of pre-existing oil reservoirs around a hot magmatic intrusion is of significant interest to the energy industry. In this paper, we present a user-friendly 1D FEM based tool, SILLi, which calculates the thermal effects of sill intrusions on the enclosing sedimentary stratigraphy. The model is accompanied by three case studies of sills emplaced in two different sedimentary basins, the Karoo Basin in South Africa and the Vøring Basin offshore Norway. Input data for the model is the present-day well log or sedimentary column with an Excel input file and includes rock parameters such as thermal conductivity, total organic carbon (TOC) content, porosity, and latent heats. The model accounts for sedimentation and burial based on a rate calculated by the sedimentary layer thickness and age. Erosion of the sedimentary column is also included to account for realistic basin evolution. Multiple sills can be emplaced within the system with varying ages. The emplacement of a sill occurs instantaneously. The model can be applied to volcanic sedimentary basins occurring globally. The model output includes the thermal evolution of the sedimentary column through time, and the changes that take place following sill emplacement such as TOC changes, thermal maturity, and the amount of organic and carbonate-derived CO2. The TOC and vitrinite results can be readily benchmarked within the tool to present-day values measured within the sedimentary column. This allows the user to determine the conditions required to obtain results that match observables and leads to a better understanding of metamorphic processes in sedimentary basins.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-02-08
    Description: The role of faults in petroleum systems is important especially in cases where the hydrocarbon accumulation in the prospect or field is fault-dependent. Usually, the properties of faults in petroleum systems are considered as static through time. We present a case study from the southern Halten terrace in the Norwegian Sea which highlights not only the importance of faults but also that the evolution of fault properties is key in determining the correct charge in the fields in the region. The best-fit model shows that in order to match observations the petroleum system requires at least two stages of hydrocarbon migration during which fault properties change from partially to completely sealing with respect to hydrocarbon flow across them. The most likely process that results in fault sealing is cementation due to increasing temperatures caused by the rapid burial during the Quaternary glaciations. This results in the most accurate charge of accumulations in the region while also explaining other observations such as present-day pressure compartmentalization and biodegradation. The best-fit model also implements the source rock thermal evolution based on a 2D basin model that improves the match of fluid GOR in the accumulation to the measured values. This study highlights the importance of multi-scale, multi-physics and multi-stage models in order to obtain results consistent with present day observations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-02-06
    Description: Highlights • Numerical model of sill intrusions in sedimentary basins. • Fracture and vent formation due to overpressure generation. • Methane fluxes through a single vent with upscaling to basin scales. • Additional regions in the NAIP required to correlate methane venting and the PETM. Abstract Vent structures are intimately associated with sill intrusions in sedimentary basins globally and are thought to have been formed contemporaneously due to overpressure generated by gas generation during thermogenic breakdown of kerogen or boiling of water. Methane and other gases generated during this process may have driven catastrophic climate change in the geological past. In this study, we present a 2D FEM/FVM model that accounts for ‘explosive’ vent formation by fracturing of the host rock based on a case study in the Harstad Basin, offshore Norway. Overpressure generated by gas release during kerogen breakdown in the sill thermal aureole causes fracture formation. Fluid focusing and overpressure migration towards the sill tips results in vent formation after only few tens of years. The size of the vent depends on the region of overpressure accessed by the sill tip. Overpressure migration occurs in self-propagating waves before dissipating at the surface. The amount of methane generated in the system depends on TOC content and also on the type of kerogen present in the host rock. Generated methane moves with the fluids and vents at the surface through a single, large vent structure at the main sill tip matching first-order observations. Violent degassing takes place within the first couple of hundred years and occurs in bursts corresponding to the timing of overpressure waves. The amount of methane vented through a single vent is only a fraction (between 5 and 16%) of the methane generated at depth. Upscaling to the Vøring and Møre Basins, which are a part of the North Atlantic Igneous Province, and using realistic host rock carbon content and kerogen values results in a smaller amount of methane vented than previously estimated for the PETM. Our study, therefore, suggests that the negative carbon isotope excursion (CIE) observed in the fossil record could not have been caused by intrusions within the Vøring and Møre Basins alone and that a contribution from other regions in the NAIP is also required to drive catastrophic climate change.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-02-08
    Description: Highlights • We have tested a hypothesis where a sill intrusion is present at depth near Lusi. • We have calculated the CO2 generation following the emplacing a 150 m sill in an organic rich sequence at 4.5 km. • This scenario may provide the CO2 currently emitted from Lusi, and are consistent with geological information. Abstract The Lusi mud eruption started in 2006 and is located near the Arjuno-Welirang volcanic complex in Northeastern Java. Lusi is characterized by the eruption of aqueous vapor, CO2, and CH4 in addition to mud breccia and boiling water. However, the ultimate driving force for the eruption remains unclear. Here we investigate if Lusi could have been driven by the heat released from a deep-seated igneous sill originating from the neighboring volcanic arc. We have used a 1D thermal model to calculate the production of CO2 from thermally matured organic matter in the contact aureole of a hypothetical 150 m thick sill. The sill is tentatively emplaced at 1100 °C at 4.5 km depth within the organic-rich Eocene Ngimbang Formation. The carbon gas produced from the thermal perturbation reaches a peak of 1357 kg/m2/y CO2 equivalents shortly after sill emplacement, stressing the efficiency of organic matter transformation in contact aureoles. Our simulations show that during the first 1000 years after emplacement, 53.5 ton CO2/m2 is produced in the contact aureole. When scaled to a sill size of 150 m × 25 km2, i.e., a sill volume of 3.75 km3, the aureole has the potential to generate a total of 1350 Mt CO2 during the first 1000 years, with a peak generation of about 34 Mt CO2/y. We conclude that contact metamorphism in our hypothetical geological scenario generates CO2 in the gigaton range and represents a plausible source for the Lusi gas.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Talk] In: AGU Fall Meeting 2010, 15.12.2010, San Francisco, California, USA .
    Publication Date: 2012-02-23
    Description: OS34A-05: Hydrothermal convection is an important process that occurs in the oceanic lithosphere as well as within continents where the geothermal gradient is high enough to drive fluid flow. This process efficiently mines heat from the lithosphere, sustains life in the otherwise bleak settings at oceanic depths and is associated with mineral deposits. Although recent focus on hydrothermal systems has greatly improved our understanding on how they work, the detailed effects of topography on these systems has largely been ignored. While the qualitative effects of topography on hydrothermal flow are largely known (e.g. Ingebritsen 2006), we here present results from systematic numerical modeling on the importance of topography for both, subaerial and submarine hydrothermal convection. The model is based on a 2-D Finite Element Method (FEM) solver for fully compressible, single-phase, porous media fluid flow and is used to simulate hydrothermal convection in a number of synthetic studies as well as for two case studies for the Lucky Strike vent field (submarine) and the Amiata volcano (subaerial). The results of synthetic studies using sinusoidal topography variations show that topography indeed has a profound effect on the distribution and flow field of the convection cells. In the submarine case, fluid venting occurs at the topographic highs while the recharge zones are restricted to the lows. For the subaerial scenarios, the opposite occurs where groundwater flow focuses venting at flank regions and the recharge zones are situated at the highs. For example, in the submarine case, ~90% of the hydrothermal fluids vent at upper 50% of topographic highs if the number of topographic highs equals the number of plumes in a flat-top reference simulation. The results show that the focusing effect into topographic highs (submarine) and lows (subaerial) is highly dependent on the wavelength and amplitude of topography, i.e. wavelengths that are too high or low result in venting at flanks or even topographic lows (submarine case). Amplitude also has a first-order effect of focusing the vent sites on topographic highs and lows. Another observation is that the wavelength of the topography affects the number of plumes generated in the model. These findings are confirmed in two case studies for the submarine Lucky Strike hydrothermal field on the Mid-Atlantic Ridge and the subaerial geothermal field of Amiata, Italy. In both case studies the predicted vent locations fit well with the observed ones.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Elsevier
    In:  Earth and Planetary Science Letters, 296 (1/2). pp. 34-44.
    Publication Date: 2019-09-23
    Description: Hydration of the oceanic lithosphere is an important and ubiquitous process which alters both the chemical and physical properties of the affected lithologies. One of the most important reactions that affect the mantle is serpentinization. The process of serpentinization results in a drastic decrease in the density (up to 40%), seismic velocity and brittle strength as well as water uptake of up to 13 wt.% of the ultramafic rock. In this paper, we use numerical models to study the amount and extent of serpentinization that may occur at mid-ocean ridges and its effects on fluid flow within the lithosphere. The two dimensional, FEM model solves three coupled, time-dependent equations: (i) mass-conserving Darcy flow equation, (ii) energy conserving heat transport equation and (iii) serpentinization rate of olivine with feedbacks to temperature (exothermic reaction), fluid consumption and variations in porosity and permeability (volume changes). The thermal structure of the ridge is strongly influenced by rock permeability in addition to the spreading velocity of the ridge. Increased rock permeability enhances hydrothermal convection and results in efficient heat mining from the lithosphere whereas higher spreading velocities result in a higher thermal gradient. Serpentinization of the oceanic mantle, in turn, depends on the aforementioned, competing processes. However, serpentinization of mantle rocks is itself likely to result in strong variations of rock porosity and permeability. Here we explore the coupled feedbacks. Increasing rates of serpentinization lead to large volume changes and therefore, rock fracturing thereby increasing rock porosity/permeability while as serpentinization reaches completion, the open pore space in the rock is reduced due to the relative dominance of mineral precipitation. Although, variations in the relation between porosity and permeability and serpentinization before the reaction reaches completion do not significantly affect the degree of serpentinization, we find that unreasonably large portions of the mantle would be serpentinized if rock closure does not occur at the final reaction stage. The amount of water trapped as hydrous phases within the mantle shows a strong dependency on the spreading velocity of the ridge with water content ranging from 0.18 × 105 kg/m2 to 2.52 × 105 kg/m2. Additionally, two distinct trends are observed where the water content in the mantle at slow-spreading ridges drops dramatically with an increase in spreading velocity. The amount of water trapped in the mantle at fast-spreading ridges, on the other hand, is lower and does not significantly depend on spreading velocity.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    CAU
    In:  [Poster] In: The Lübeck Retreat, Collaborative Research SFB 574 Volatiles and Fluids in Subduction Zones: Climate Feedback and Trigger Mechanisms for Natural Disasters, 23.05.-25.05.2012, Lübeck . The Lübeck Retreat: final colloquium of SFB 574; May 23-25, 2012: program & abstracts ; p. 13 .
    Publication Date: 2012-10-12
    Description: The subduction of partially serpentinized oceanic mantle may potentially be the key geologic process leading to the regassing of Earth’s mantle and also has important consequences for subduction zone processes such as element cycling, slab deformation, and intermediate-depth seismicity. Little is known about the quantity of water that is retained in the slab during mantle serpentinization. Recent studies using thermodynamical and/or experimental models of subduction zone processes have assumed that the mantle is uniformly serpentinized to a depth determined from the equilibrium stability of serpentine minerals in P-T space. This approach yields an incomplete picture of the pattern of serpentinization that may occur during bending-related faulting; an initial state that is essential for quantifying subsequent dehydration processes. In order to provide further constraints on the pattern of hydration and the amount of water trapped in the subducting mantle, we build a 2-D reactive-flow model incorporating the kinetic rate-dependence of serpentinization based on experimental results. After simulating hydration processes at the trench outer-rise, we find that the water content in serpentinized mantle strongly depends on the age of the subducting lithosphere and subduction rate, with values ranging between 1.8x105 and 4.0x106 kgm-2 reactive water uptake into the subducting mantle column. Serpentinization also results in a reduction in surface heat flux towards the trench caused by advective downflow of seawater into the reaction region. Observed heat flow reductions are larger than the reduction due to the minimum-water downflow needed for partial serpentinization, predicting that active hydrothermal vents and chemosynthetic communities should also be associated with bend-fault serpentinization. Model results agree with previous studies that the lower plane of double Benioff zones can be generated due to dehydration of serpentinized mantle at depth. The depth-dependent pattern of serpentinization including reaction kinetics predicts a separation between the two Benioff planes consistent with seismic observations.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Invited talk] In: Physics of Geological Processes, University of Oslo, 21.06.2012, Oslo, Norway .
    Publication Date: 2012-10-16
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  [Talk] In: ECORD Summer School on Geodynamics of Mid-Ocean Ridges, 04.09, Bremen .
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...