ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: Many features of Herbig-Haro objects can be reproduced using a kinematical bow shock model. We use the model to generate position-velocity (PV) diagrams of flux in H-alpha (O I) lambda lambda 6300+63, (S II) lambda lambda 6716+31, (O III) lambda lambda 4959+5007, and (C I) lambda lambda 9823+50, line ratios of (O I)/H-alpha, (O I)/(S II), (S II)/H-alpha, H-alpha(S II), and (O III)/H-alpha, electron density N(sub e), and electron temperature T(sub e). We show how position-velocity diagrams of N(sub e) and flux vary with shock velocity. By matching the diagrams from single lines, the line ratios, and N(sub e) with observations, we determined a narrow range of shock parameters for HH 1F, 2(A' + H), and 43 (B + C). We model the N(sub e) features of HH 2(A' + H) as a superposition of two bowshocks. We also show that the effects of slight misalignments of the two diagrams to be divided can produce artifacts in the line ratios and N(sub e) which obliterate the physical features. We show that N(sub e) in HH 1 can only be explained using the kinematical model by taking these misalignments into account.
    Keywords: ASTROPHYSICS
    Type: Astronomical Journal (ISSN 0004-6256); 109; 2; p. 752-761
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: We report the first extragalactic detection of the complex organic molecules (COMs) dimethyl ether (CH3OCH3) and methyl formate (CH3OCHO) with the Atacama Large Millimeter/submillimeter Array (ALMA). These COMs, together with their parent species methanol (CH3OH), were detected toward two 1.3 mm continuum sources in the N 113 star-forming region in the low-metallicity Large Magellanic Cloud (LMC). Rotational temperatures (Trot approx. 130 K) and total column densities (Nrot 10 approx. 16 cm2) have been calculated for each source based on multiple transitions of CH3OH. We present the ALMA molecular emission maps for COMs and measured abundances for all detected species. The physical and chemical properties of two sources with COMs detection, and the association with H2O and OH maser emission, indicate that they are hot cores. The fractional abundances of COMs scaled by a factor of 2.5 to account for the lower metallicity in the LMC are comparable to those found at the lower end of the range in Galactic hot cores. Our results have important implications for studies of organic chemistry at higher redshift.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN66669 , GSFC-E-DAA-TN54004 , The Astrophysical Journal Letters (ISSN 2041-8205) (e-ISSN 2041-8213); 853; 2; L19
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-12
    Description: The dust properties in the Large and Small Magellanic Clouds are studied using the HERITAGE Herschel Key Project photometric data in five bands from 100 to 500 micromillimeters. Three simple models of dust emission were fit to the observations: a single temperature blackbody modified by a powerlaw emissivity (SMBB), a single temperature blackbody modified by a broken power-law emissivity (BEMBB), and two blackbodies with different temperatures, both modified by the same power-law emissivity (TTMBB). Using these models we investigate the origin of the submillimeter excess; defined as the submillimeter (submm) emission above that expected from SMBB models fit to observations 〈 200 micromillimeters. We find that the BEMBB model produces the lowest fit residuals with pixel-averaged 500 micromillimeters submillimeter excesses of 27% and 43% for the Large and Small Magellanic Clouds, respectively. Adopting gas masses from previous works, the gas-to-dust ratios calculated from our fitting results show that the TTMBB fits require significantly more dust than are available even if all the metals present in the interstellar medium (ISM) were condensed into dust. This indicates that the submillimeter excess is more likely to be due to emissivity variations than a second population of colder dust. We derive integrated dust masses of (7.3 plus or minus 1.7) x 10 (sup 5) and (8.3 plus or minus 2.1) x 10 (sup 4) solar masses for the Large and Small Magellanic Clouds, respectively. We find significant correlations between the submillimeter excess and other dust properties; further work is needed to determine the relative contributions of fitting noise and ISM physics to the correlations.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN19477
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: We present the results of Very Large Array NH3 (J, K) = (1, 1) and (2, 2) observations of the HH 111/HH 121 protostellar system. HH 111, with a spectacular collimated optical jet, is one of the most well-known Herbig-Haro objects. We report the detection of a new source, NH3-S, in the vicinity of HH 111/HH 121 (approximately 0.03 parsecs from the HH 111 jet source) in two epochs of the ammonia observations. This constitutes the first detection of this source, in a region that has been thoroughly covered previously by both continuum and spectral line interferometric observations. We study the kinematic and physical properties of HH 111 and the newly discovered NH3-S. We also use HCO plus and HCN (J=4-3) data obtained with the James Clerk Maxwell Telescope and archival Atacama Large Millimeter/submillimeter Array (sup 13) CO, (sup 12) CO, and C (sup 18) O (J=2-1), N2D plus (J=3-2), and (sup 13) CS (J=5-4) data to gain insight into the nature of NH3-S. The chemical structure of NH3-S shows evidence for "selective freeze-out," an inherent characteristic of dense cold cores. The inner part of NH3-S shows subsonic nonthermal velocity dispersions indicating a "coherent core," while they increase in the direction of the jets. Archival near- to far-infrared data show no indication of any embedded source in NH3-S. The properties of NH3-S and its location in the infrared dark cloud suggest that it is a starless core located in a turbulent medium, with the turbulence induced by Herbig-Haro jets and associated outflows. More data are needed to fully understand the physical and chemical properties of NH3-S and if/how its evolution is affected by nearby jets.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN50880 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 849; 1; 68
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-11-06
    Description: The Large and Small Magellanic Clouds (LMC and SMC), gas-rich dwarf companions of the Milky Way, are the nearest laboratories for detailed studies on the formation and survival of complex organic molecules (COMs) under metal-poor conditions. To date, only methanol, methyl formate, and dimethyl ether have been detected in these galaxiesall three toward two hot cores in the N113 star-forming region in the LMC, the only extragalactic sources exhibiting complex hot-core chemistry. We describe a small and diverse sample of the LMC and SMC sources associated with COMs or hot-core chemistry, and compare the observations to theoretical model predictions. Theoretical models accounting for the physical conditions and metallicity of hot molecular cores in the Magellanic Clouds have been able to broadly account for the existing observations, but they fail to reproduce the dimethyl ether abundance by more than an order of magnitude. We discuss future prospects for research in the eld of complex chemistry in the low- metallicity environment. The detection of COMs in the Magellanic Clouds has important implications for astrobiology. The metallicity of the Magellanic Clouds is similar to that of galaxies in the earlier epochs of the universe; thus, the presence of COMs in the LMC and SMC indicates that a similar prebiotic chemistry leading to the emergence of life, as it happened on Earth, is possible in low-metallicity systems in the earlier universe.
    Keywords: Space Sciences (General)
    Type: GSFC-E-DAA-TN73604 , ACS Earth and Space Chemistry (e-ISSN 2472-3452); 3; 10; 2088-2109
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...