ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
Collection
Years
  • 1
    Publication Date: 2020-03-12
    Description: The universally known subsidence theory of Darwin, based on Bora Bora as a model, was developed without information from the subsurface. To evaluate the influence of environmental factors on reef development, two traverses with three cores, each on the barrier and the fringing reefs of Bora Bora, were drilled and 34 uranium-series dates obtained and subsequently analysed. Sea-level rise and, to a lesser degree, subsidence were crucial for Holocene reef development in that they have created accommodation space and controlled reef architecture. Antecedent topography played a role as well, because the Holocene barrier reef is located on a Pleistocene barrier reef forming a topographic high. The pedestal of the fringing reef was Pleistocene soil and basalt. Barrier and fringing reefs developed contemporaneously during the Holocene. The occurrence of five coralgal assemblages indicates an upcore increase in wave energy. Age–depth plots suggest that barrier and fringing reefs have prograded during the Holocene. The Holocene fringing reef is up to 20 m thick and comprises coralgal and microbial reef sections and abundant unconsolidated sediment. Fringing reef growth started 8780 ± 50 yr bp; accretion rates average 5·65 m kyr−1. The barrier reef consists of 〉30 m thick Holocene coralgal and microbial successions. Holocene barrier-reef growth began 10 030 ± 50 yr bp and accretion rates average 6·15 m kyr−1. The underlying Pleistocene reef formed 116 900 ± 1100 yr bp, i.e. during marine isotope stage 5e. Based on Pleistocene age, depth and coralgal palaeobathymetry, the subsidence rate of Bora Bora was estimated to be 0·05 to 0·14 m kyr−1. In addition to subsidence, reef development on shorter timescales like in the late Pleistocene and Holocene has been driven by glacioeustatic sea-level changes causing alternations of periods of flooding and subaerial exposure. Comparisons with other oceanic barrier-reef systems in Tahiti and Mayotte exhibit more differences than similarities.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: Highlights • First systematic description of Pleistocene facies of the Maldives reveals shallow-water deposits • Only U-series ages from Pleistocene deposits of the Maldives (MIS 5e) • Geochronology and paleo-bathymetric analyses allow estimation of late Quaternary subsidence of this major carbonate platform location to 0.09 - 0.16 m/kyr To date, there is hardly any knowledge of facies and age of Pleistocene reef limestone in the Maldives. Likewise, there are no robust estimates of Quaternary subsidence in this major shallow-water carbonate platform and reef area. In a core recovered on the windward margin of Rasdhoo Atoll in the central part of the archipelago, Pleistocene coralgal grainstone facies belonging to marine isotope stage (MIS) 5e were recovered underlying a Holocene reef succession, 14.5 m below modern sea level. Based on the occurrence of shallow-water stony corals such as Isopora palifera and possibly Acropora gr. robusta, high-energy coralline algae including Porolithon onkodes, in part associated with vermetids, and grain-supported limestone texture, the paleoenvironment is interpreted as a shallow back reef area with a paleo-waterdepth of 〈10 m. Based on a reliable U-series age from a Pleistocene acroporid coral of 136.9 kyr BP and assuming a + 7.5 m higher-than-present peak sea level during MIS 5e, late Quaternary subsidence is estimated to 0.09 m/kyr (minimum)–0.16 m/kyr (maximum value). A sea level of +2.5 m during the early MIS 5e would reduce the rates to 0.05 m/kyr (minimum)–0.12 m/kyr (maximum). These numbers are significant for reconstructions of depositional environments of this major carbonate platform area in the Quaternary. The subsidence estimates are not as crucial for historical reconstruction of relative sea level and for predictions of the near future in this low-lying archipelago, because they will add only a minor portion to the predicted rates of 21st century sea-level rise.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: Holocene fringing reef development around Bora Bora is controlled by variations in accommodation space (as a function of sea-level and antecedent topography) and exposure to waves and currents. Subsidence ranged from 0 to 0·11 m kyr−1, and did not create significant accommodation space. A windward fringing reef started to grow 8·7 kyr bp, retrograded towards the coast over a Pleistocene fringing reef until ca 6·0 kyr bp, and then prograded towards the lagoon after sea-level had reached its present level. The retrograding portion of the reef is dominated by corals, calcareous algae and microbialite frameworks; the prograding portion is largely detrital. The reef is up to 13·5 m thick and accreted vertically with an average rate of 3·12 m kyr−1. Lateral growth amounts to 13·3 m kyr−1. Reef corals are dominated by an inner Pocillopora assemblage and an outer Acropora assemblage. Both assemblages comprise thick crusts of coralline algae. Palaeobathymetry suggests deposition in 0 to 10 m depth. An underlying Pleistocene fringing reef formed during the sea-level highstand of Marine Isotope Stage 5e, and is also characterized by the occurrence of corals, coralline algal crusts and microbialites. A previously investigated, leeward fringing reef started to form contemporaneously (8·78 kyr bp), but is thicker (up to 20 m) and solely prograded throughout the Holocene. A shallow Pocillopora assemblage and a deeper water Montipora assemblage were identified, but detrital facies dominate. At the Holocene reef base, only basalt was recovered. The Holocene windward–leeward differences are a consequence of less accommodation space on the eastern island side that eventually led to a more complex reef architecture. As a result of higher rates of exposure and flushing, the reef framework on the windward island side is more abundant and experienced stronger cementation. In the Pleistocene, the environmental conditions on the leeward island side were presumably unfavourable for fringing reef growth.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...