ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-08-07
    Description: Porangahau Ridge, located offshore the Wairarapa on the Hikurangi Margin, is an active ocean-continent collision region in northeastern New Zealand coastal waters. Bottom simulating reflections (BSRs) in seismic data indicate the potential for significant gas hydrate deposits across this part of the margin. Beneath Porangahau Ridge a prominent high-amplitude reflection band has been observed to extend from a deep BSR towards the seafloor. Review of the seismic data suggest that this high-amplitude band is caused by local shoaling of the base of gas hydrate stability due to advective heat flow and it may constitute the location of elevated gas hydrate concentrations. During R/V Tangaroa cruise TAN0607 in 2006 heat flow probing for measurements of vertical fluid migration, sediment coring for methane concentrations, and additional seismic profiles were obtained across the ridge. In a subsequent 2007 expedition, on R/V Sonne cruise SO191, a controlled source electromagnetic (CSEM) experiment was conducted along the same seismic, geochemical, and heat flow transect to reveal the electrical resistivity distribution. CSEM data highlight a remarkable coincidence of anomalously high resistivity along the western, landward flank of the ridge which point to locally higher gas hydrate concentration above the high amplitude reflection band. Measured sediment temperature profiles, also along the western flank, consistently show non-linear and concave geothermal gradients typical of advective heat flow. Geochemical data reveal elevated methane concentrations in surface sediments concomitant with a rapid decline in sulfate concentrations indicating elevated methane flux and oxidation of methane in conjunction with sulfate reduction at the landward ridge base. Together, these data sets suggest that the western rim of Porangahau Ridge is a tectonically driven zone of rising fluids that transport methane and cause an upward inflection of the base of gas hydrate stability and the formation of locally enriched gas hydrate above the reflective zone.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-07-09
    Description: We present recently-acquired high-resolution seismic data and older lower-resolution seismic data from Rock Garden, a shallow marine gas hydrate province on New Zealand's Hikurangi Margin. The seismic data reveal plumbing systems that supply gas to three general sites where seeps have been observed on the Rock Garden seafloor: the ‘LM3’ sites (including LM3 and LM3-A), the ‘Weka’ sites (including Weka-A, Weka-B, and Weka-C), and the ‘Faure’ sites (including Faure-A, Faure-B, and Rock Garden Knoll). At the LM3 sites, seismic data reveal gas migration from beneath the bottom simulating reflection (BSR), through the gas hydrate stability zone (GHSZ), to two separate seafloor seeps (LM3 and LM3-A). Gas migration through the deeper parts of GHSZ below the LM3 seeps appears to be influenced by faulting in the hanging wall of a major thrust fault. Closer to the seafloor, the dominant migration pathways appear to occupy vertical chimneys. At the Weka sites, on the central part of the ridge, seismic data reveal a very shallow BSR. A distinct convergence of the BSR with the seafloor is observed at the exit point of one of the Weka seep locations (Weka-A). Gas supply to this seep is predicted to be focused along the underside of a permeability contrast at the BGHS caused by overlying gas hydrates. The Faure sites are associated with a prominent arcuate slump feature. At Faure-A, high-amplitude reflections, extending from a shallow BSR towards the seafloor, are interpreted as preferred gas migration pathways that exploit relatively-high-permeability sedimentary layers. At Faure-B, we interpret gas migration to be channelled to the seep along the underside of the BGHS — the same scenario interpreted for the Weka-A site. At Rock Garden Knoll, gas occupies shallow sediments within the GHSZ, and is interpreted to migrate up-dip along relatively high-permeability layers to the area of seafloor seepage. We predict that faulting, in response to uplift and flexural extension of the ridge, may be an important mechanism in creating fluid flow conduits that link the reservoir of free gas beneath the BGHS with the shallow accumulations of gas imaged beneath Rock Garden Knoll. From a more regional perspective, much of the gas beneath Rock Garden is focused along a northwest-dipping fabric, probably associated with subduction-related deformation of the margin.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2017-08-07
    Description: The southern Hikurangi Subduction Margin is characterized by significant accretion with predicted high rates of fluid expulsion. Bottom simulating reflections (BSRs) are widespread on this margin, predominantly occurring beneath thrust ridges. We present seismic data across the Porangahau Ridge on the outer accretionary wedge. The data show high-amplitude reflections above the regional BSR level. Based on polarity and reflection strength, we interpret these reflections as being caused by free gas. We propose that the presence of gas above the regional level of BSRs indicates local upwarping of the base of gas hydrate stability caused by advective heatflow from upward migrating fluids, although we cannot entirely rule out alternative processes. Simplified modelling of the increase of the thermal gradient associated with fluid flow suggests that funnelling of upward migrating fluids beneath low-permeability slope basins into the Porangahau Ridge would not lead to the pronounced thermal anomaly inferred from upwarping of the base of gas hydrate stability. Focussing of fluid flow is predicted to take place deep in the accretionary wedge and/or the underthrust sediments. Above the high-amplitude reflections, sediment reflectivity is low. A lack of lateral continuity of reflections suggests that reflectivity is lost because of a destruction of sediment layering from deformation rather than gas-hydrate-related amplitude blanking. Structural permeability from fracturing of sediments during deformation may facilitate fluid expulsion on the ridge. A gap in the BSR in the southern part of the study area may be caused by a loss of gas during fluid expulsion. We speculate that gaps in otherwise continuous BSRs that are observed beneath some thrusts on the Hikurangi Margin may be characteristic of other locations experiencing focussed fluid expulsion.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-05-19
    Description: Regional erosion of the Rock Garden ridge top, a bathymetric high within New Zealand’s Hikurangi Subduction Margin, is likely associated with its gas hydrate system. Seismic data reveal gas pockets that appear partially trapped beneath the shallow base of gas hydrate stability. Steady-state fluid flow simulations, conducted on detailed two-dimensional geological models, reveal that anomalous fluid pressure can develop close to the sea floor in response to lower-permeability hydrate-bearing sediments and underlying gas pockets. Transient simulations indicate that large-scale cycling of fluid overpressure may occur on time scales of a few to tens of years. We predict intense regions of hydro-fracturing to preferentially develop beneath the ridge top rather than beneath the flanks, due to more pronounced overpressure generation and gas migration through hydrate-bearing sediments. Results suggest that sediment weakening and erosion of the ridge top by hydro-fracturing could be owed to fluid dynamics of the shallow gas hydrate system.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-08-08
    Description: The imbricated frontal wedge of the central Hikurangi subduction margin is characteristic of wide (ca. 150 km), poorly drained and over pressured, low taper (not, vert, similar 4°) thrust systems associated with a relatively smooth subducting plate, a thick trench sedimentary sequence (not, vert, similar 3–4 km), weak basal décollement, and moderate convergence rate (not, vert, similar 40 mm/yr). New seismic reflection and multibeam bathymetric data are used to interpret the regional tectonic structures, and to establish the geological framework for gas hydrates and fluid seeps. We discuss the stratigraphy of the subducting and accreting sequences, characterize stratigraphically the location of the interplate décollement, and describe the deformation of the upper plate thrust wedge together with its cover sequence of Miocene to Recent shelf and slope basin sediments. We identify approximately the contact between an inner foundation of deforming Late Cretaceous and Paleogene rocks, in which widespread out-of-sequence thrusting occurs, and a 65–70 km-wide outer wedge of late Cenozoic accreted turbidites. Although part of a seamount ridge is presently subducting beneath the deformation front at the widest part of the margin, the morphology of the accretionary wedge indicates that frontal accretion there has been largely uninhibited for at least 1–2 Myr. This differs from the offshore Hawkes Bay sector of the margin to the north where a substantial seamount with up to 3 km of relief has been subducted beneath the lower margin, resulting in uplift and complex deformation of the lower slope, and a narrow (10–20 km) active frontal wedge. Five areas with multiple fluid seep sites, referred to informally as Wairarapa, Uruti Ridge, Omakere Ridge, Rock Garden, and Builders Pencil, typically lie in 700–1200 m water depth on the crests of thrust-faulted, anticlinal ridges along the mid-slope. Uruti Ridge sites also lie in close proximity to the eastern end of a major strike-slip fault. Rock Garden sites lie directly above a subducting seamount. Structural permeability is inferred to be important at all levels of the thrust system. There is a clear relationship between the seeps and major seaward-vergent thrust faults, near the outer edge of the deforming Cretaceous and Paleogene inner foundation rocks. This indicates that thrust faults are primary fluid conduits and that poor permeability of the Cretaceous and Paleogene inner foundation focuses fluid flow to its outer edge. The sources of fluids expelling at active seep sites along the middle slope may include the inner parts of the thrust wedge and subducting sediments below the décollement. Within anticlinal ridges beneath the active seep sites there is a conspicuous break in the bottom simulating reflector (BSR), and commonly a seismically-resolvable shallow fault network through which fluids and gas percolate to the seafloor. No active fluid venting has yet been recognized over the frontal accretionary wedge, but the presence of a widespread BSR, an extensive protothrust zone (〉 200 km by 20 km) in the Hikurangi Trough, and two unconfirmed sites of possible previous fluid expulsion, suggest that the frontal wedge could be actively dewatering. There are presently no constraints on the relative fluid flux between the frontal wedge and the active mid-slope fluid seeps. Article Outline
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-06-10
    Description: New high-resolution swath bathymetry data show a complex seafloor morphology from the Rock Garden area, offshore Hikurangi Margin, that coincides with the subduction of a seamount presently located beneath the summit of Rock Garden. Another ridge-shaped lower plate feature is initially colliding with Rock Garden, forming a re-entrant at its seaward flank. The slopes of the accretionary ridges are steeper than 10° and often more than 20° regionally. Slumping mostly occurs on the trench-ward slopes, with individual slumps affecting areas up to several km2. Critical taper analysis, using realistic wedge geometries and fluid pressures scenarios, shows that much of the seaward slopes in the region are most likely outside the stability field and therefore subject to failure. The most prominent feature revealed by seafloor maps is the trench-ward flank of Rock Garden with a height of 1800 to 2000 m and an average slope of more than 10°. Extensional faults arranged in two sub-circular arcs indicate that Rock Garden may be on the verge of failure. Critical taper analysis also supports this claim and shows that if basal fluid pressure approaches lithostatic pressure, e.g. during a large Mw 〉 8 earthquakes, then a complete failure of the entire trench-ward flank of Rock Garden would potentially affect an area as large as 150 km2 and a rock volume of 150 to 170 km3. This worst case scenario would generate a tsunami wave some tens of meters high. Therefore, the observation that a number of seamounts are buried beneath the outer Hikurangi accretionary wedge suggests that a thorough assessment of these features needs to be undertaken and its results incorporated into tsunami hazard models for the East Coast of New Zealand's North Island.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-11-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2012-02-23
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  In: A Continental Plate Boundary: Tectonics at South Island, New Zealand. , ed. by Okaya, D., Stern, T. and Davey, F. Geophysical Monograph Series, 175 . AGU (American Geophysical Union), Washington, DC, pp. 47-73. ISBN 978-0-87590-440-5
    Publication Date: 2016-02-12
    Type: Book chapter , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...