ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Bulletin of the American Meteorological Society, 98 (6). ES139-ES142.
    Publication Date: 2020-07-16
    Description: The 13th European Polar Low Workshop was organized by the European Polar Low Working Group (www.uni-trier.de/index.php?id=20308)and gathered scientists from nine countries focusing on polar mesocyclones in both hemispheres and other mesoscale weather phenomena such as katabatic winds, tip jets, boundary layer fronts, cold air outbreaks, and weather extremes in polar regions. Topics included experimental, climatological, theoretical, modeling, and remote sensing studies. The aim was to bring together scientists and forecasters to present their latest work and recent findings on these topics and to encourage discussions on improving forecasting and understanding of these phenomena.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 30 (22). pp. 8913-8927.
    Publication Date: 2020-02-06
    Description: The regional climate model COSMOin Climate Limited-AreaMode (COSMO-CLM or CCLM) is used with a high resolution of 15km for the entire Arctic for all winters 2002/03–2014/15. The simulations show a high spatial and temporal variability of the recent 2-m air temperature increase in the Arctic. The maximum warming occurs north of Novaya Zemlya in the Kara Sea and Barents Sea between March 2003 and 2012 and is responsible for up to a 208C increase. Land-based observations confirm the increase but do not cover the maximum regions that are located over the ocean and sea ice.Also, the 30-km version of theArctic SystemReanalysis (ASR) is used to verify the CCLM for the overlapping time period 2002/03–2011/12. The differences between CCLM and ASR 2-m air temperatures vary slightly within 18C for the ocean and sea ice area. Thus,ASR captures the extreme warming as well. The monthly 2-m air temperatures of observations and ERA-Interim data show a large variability for the winters 1979–2016. Nevertheless, the air temperature rise since the beginning of the twenty-first century is up to 8 times higher than in the decades before. The sea ice decrease is identified as the likely reason for the warming. The vertical temperature profiles show that the warming has a maximum near the surface, but a 0.58Cyr21 increase is found up to 2 km. CCLM, ASR, and also the coarser resolved ERA-Interim data show that February and March are the months with the highest 2-m air temperature increases, averaged over the ocean and sea ice area north of 708N; for CCLM the warming amounts to an average of almost 58C for 2002/03–2011/12.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-02-06
    Description: This paper investigates new observations from the poorly understood region between the Kara and Laptev Seas in the Eastern Arctic Ocean. We discuss relevant circulation features including riverine freshwater, Atlantic-derived water, and polynya-formed dense water, emphasize Vilkitsky Strait (VS) as an important Kara Sea gateway, and analyze the role of the adjacent ∼250 km-long submarine Vilkitsky Trough (VT) for the Arctic boundary current. Expeditions in 2013 and 2014 operated closely spaced hydrographic transects and 1 year-long oceanographic mooring near VT's southern slope, and found persistent annually averaged flow of 0.2 m s−1 toward the Nansen Basin. The flow is nearly barotropic from winter through early summer and becomes surface intensified with maximum velocities of 0.35 m s−1 from August to October. Thermal wind shear is maximal above the southern flank at ∼30 m depth, in agreement with basinward flow above VT's southern slope. The subsurface features a steep front separating warm (–0.5°C) Atlantic-derived waters in central VT from cold (〈–1.5°C) shelf waters, which episodically migrates across the trough indicated by current reversals and temperature fluctuations. Shelf-transformed waters dominate above VT's slope, measuring near-freezing temperatures throughout the water column at salinities of 34–35. These dense waters are vigorously advected toward the Eurasian Basin and characterize VT as a conduit for near-freezing waters that could potentially supply the Arctic Ocean's lower halocline, cool Atlantic water, and ventilate the deeper Arctic Ocean. Our observations from the northwest Laptev Sea highlight a topographically complex region with swift currents, several water masses, narrow fronts, polynyas, and topographically channeled storms.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    Schweizerbarth
    In:  Meteorologische Zeitschrift, 25 (5). pp. 543-562.
    Publication Date: 2019-05-31
    Description: The simulation of extremes using climate models is still a challenging task. Currently, the model grid horizontal resolution of state-of-the art regional climate models (RCMs) is about 11–25 km, which may still be too coarse to represent local extremes realistically. In this study we use dynamically downscaled ERA-40 reanalysis data of the RCM COSMO-CLM at 18 km resolution, downscale it dynamically further to 4.5 km and finally to 1.3 km to investigate the impact of the horizontal resolution on extremes. Extremes are estimated as return levels for the 2, 5 and 10‑year return periods using ‘peaks-over-threshold’ (POT) models. Daily return levels are calculated for precipitation and maximum 2 m temperature in summer as well as precipitation and 2 m minimum temperature in winter. The results show that CCLM is able to capture the spatial and temporal structure of the observed extremes, except for summer precipitation extremes. Furthermore, the spatial variability of the return levels increases with resolution. This effect is more distinct in case of temperature extremes due to a higher correlation with the better resolved orography. This dependency increases with increasing horizontal resolution. In comparison to observations, the spatial variability of temperature extremes is better simulated at a resolution of 1.3 km, but the return levels are cold-biased in summer and warm-biased in winter. Regarding precipitation, the spatial variability improves as well, although the return levels were slightly overestimated in summer by all CCLM simulations. In summary, the results indicate that an increase of the horizontal resolution of CCLM does have a significant effect on the simulation of extremes and that impact models and assessment studies may benefit from such high-resolution model output.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-01
    Description: The presence of sea-ice leads represents a key feature of the Arctic sea ice cover. Leads promote the flux of sensible and latent heat from the ocean to the cold winter atmosphere and are thereby crucial for air-sea-ice-ocean interactions. We here apply a binary segmentation procedure to identify leads from MODIS thermal infrared imagery on a daily time scale. The method separates identified leads into two uncertainty categories, with the high uncertainty being attributed to artifacts that arise from warm signatures of unrecognized clouds. Based on the obtained lead detections, we compute quasi-daily pan-Arctic lead maps for the months of January to April, 2003–2015. Our results highlight the marginal ice zone in the Fram Strait and Barents Sea as the primary region for lead activity. The spatial distribution of the average pan-Arctic lead frequencies reveals, moreover, distinct patterns of predominant fracture zones in the Beaufort Sea and along the shelf-breaks, mainly in the Siberian sector of the Arctic Ocean as well as the well-known polynya and fast-ice locations. Additionally, a substantial inter-annual variability of lead occurrences in the Arctic is indicated.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  [Poster] In: High Latitude Dynamics Workshop, 23.-27.03.2015, Rosendal, Norway .
    Publication Date: 2016-04-05
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: other
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Berichte zur Polar- und Meeresforschung, 633 . UNSPECIFIED, Bremerhaven, 119 pp.
    Publication Date: 2014-12-04
    Description: Processes of the exchange of energy and momentum at the sea-ice/ocean/atmosphere interface are key processes for the polar climate system. The experiment IKAPOS (Investigation of Katabatic winds and Polynyas during Summer) was performed in June 2010. The investigations comprised studies of the summertime katabatic wind system in the coastal area of north and northwest Greenland, and of atmosphere/sea-ice/ocean exchange processes over the North Water Polynya (NOW). The main tool of the experimental study was the polar aircraft POLAR 5 of the Alfred Wegener Institute (AWI), which was based at Qaanaaq (Northwest Greenland). The aircraft was instrumented with turbulence sensors, basic meteorological equipment, radiation and surface temperature sensors, laser altimeters, and video and digital cameras. A total of six research flights have been performed, two of them were katabatic wind flights (over the Humboldt and Steenstrup glacier, respectively). Katabatic wind flights capture conditions of weak and strong synoptically forced katabatic wind. During the NOW flights a fully turbulent stable boundary layer with strong winds of 15 to 20 m s-1 was measured, and channeling effects caused by Smith Sound and Nares Strait were documented. The data of IKAPOS are valuable for the validation of numerical models (including climate models) and will contribute to the understanding of the exchange processes over summertime Arctic polynyas and the Greenland ice sheet.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  [Poster] In: Joint Russian-German Workshop on Research in the Laptev Sea Region, 08.11.-11.11.2010, St. Petersburg, Russia .
    Publication Date: 2014-12-09
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2014-12-08
    Description: Polynyas in the Laptev Sea are examined with respect to recurrence and interannual wintertime ice production.We use a polynya classification method based on passive microwave satellite data to derive daily polynya area from long-term sea-ice concentrations. This provides insight into the spatial and temporal variability of open-water and thin-ice regions on the Laptev Sea Shelf. Using thermal infrared satellite data to derive an empirical thin-ice distribution within the thickness range from 0 to 20 cm, we calculate daily average surface heat loss and the resulting wintertime ice formation within the Laptev Sea polynyas between 1979 and 2008 using reanalysis data supplied by the National Centers for Environmental Prediction, USA, as atmospheric forcing. Results indicate that previous studies significantly overestimate the contribution of polynyas to the ice production in the Laptev Sea. Average wintertime ice production in polynyas amounts to approximately 55 km3 ± 27% and is mostly determined by the polynya area, wind speed and associated large-scale circulation patterns. No trend in ice production could be detected in the period from 1979/80 to 2007/08.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-12-09
    Description: Global Change and its predicted key impact on the Arctic bring the Laptev Sea to the centre of climate-related polar research. This Shelf Sea is known as being a highly productive area for the formation of new ice throughout the winter season. A main part of the ice production occurs in flaw polynyas which appear recurrently at the edge of the fast ice surrounding the coastal zones during wintertime. This work attempts to provide a method to reliably estimate the ice production in the Laptev Sea polynyas from model result s of the numerical weather prediction model COSMO. Our modeling approach contains the use of COSMO with 15 and 5 km horizontal resolution nested in global GME/ERA-Interim data to calculate ice production in polynyas. To account for realistic polynya representation polynya area is prescribed to the COSMO model by daily AMSR-E satellite data. The potential volume ice production is calculated from atmospheric net radiation fluxes. In contrast to preceding studies our new COSMO-based method takes into account the effect of polynyas on the atmosphere. Over open water, warmer 2m temperatures (COSMO in comparison to NCEP) lead to lower ice production. Over thin ice, surface temperature depends on air temperature and reduced air surface temperature gradients cause lower heat fluxes and less ice production than over open water. As warm-biased NCEP values are balancing the effects of our improvements the comparison of ice production retrieval based on NCEP data with our results show minor total differences only. Both methods are leading to results in same order of magnitude if the polynya is assumed to be covered with 10cm of thin-ice. This supports the thesis that either of them leads to feasible ice production values if thin ice within the polynya is accounted for in the calculation. In case of an open water polynya, however, our study underlines the impact of the atmospheric data on the ice production. Thus we conclude that it is of major importance to choose a validated ice thickness parameterization for the model.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...