ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: Eucrites are among the oldest and best studied asteroidal basalts (1). They represent magmatism that occurred on their parent asteroid, likely 4-Vesta, starting at ~ 4563 Ma and continuing for approx. 30 Myr. Two hypotheses are debated for the genesis of eucrites, a magma ocean model (2), and a mantle partial melting model. In general, volatiles (H, C, F, Cl) have been ignored for eucrites and 4-Vesta, but solubility of wt% levels of H2O are possible at Vestan interior PT conditions. Targeted measurements on samples could aid our understanding considerably. Recent studies have found evidence of volatile elements in eucrites, but quantifying the abundance of volatiles remains problematic (6). Volatile elements have a disproportionately large effect on melt properties and phase stability, relative to their low abundance. The source of volatile elements can be elucidated by examining the hydrogen isotope ratio (D/H), as different H reservoirs have drastically different H isotope compositions. Recent studies of apatite in eucrites have shown that the D/H of 4-Vesta matches that of Earth and carbonaceous chondrites, however, the D/H of apatites may not represent the D/H of a primitive 4-Vesta melt due to the possibility of degassing prior to the crystallization of apatite. Therefore, the D/H of early crystallizing phases must be measured to determine if the D/H of 4-Vesta is equal to that of the Earth and carbonaceous chondrites.
    Keywords: Geophysics
    Type: JSC-CN-38464 , Lunar and Planetary Science Conference; Mar 20, 2017 - Mar 24, 2017; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2017-05-05
    Description: Low-level water measurements of geological materials are fundamental in understanding the volatile inventories of the Earth from the mantle to crustal reservoirs. Here we describe the development of microanalytical techniques using the new SHRIMP SI ion microprobe to measure the abundances of OH− (as a proxy for water) in volcanic glass and nominally anhydrous minerals (NAMs). Samples were first analysed at the Carnegie Institute of Washington (CIW) on their Cameca ims-6f with calibrations based on previous FTIR and manometry analyses. SHRIMP SI is a large geometry ion microprobe and is currently mainly used for O and S isotope analyses. The analytical protocol used here incorporates multiple collection of 16O− and 16O1H− allowing rapid measurements. A single calibration line incorporating all glasses and NAMs for the SHRIMP SI allows calibration of 16O1H−/16O− to H2O over a wide range in concentration (50 to 15 000 ppm H2O). This calibration line has around a 10% uncertainty, which appears to be limited only by sample heterogeneity. The current background for SHRIMP analysis is between 20–40 ppm but this is expected to improve with improved pumping on the source chamber. A current limitation to water analysis of NAM samples, by any technique, is having a range of standard materials to enable OH− calibration to absolute H2O concentrations. Data are presented for 7 NAM samples (2 olivines, 2 orthopyroxenes and 3 clinopyroxenes) that appear to be promising as potential standards for international laboratory H2O measurements. These NAM samples have been analysed and characterised here by SHRIMP SI, FTIR, EMP and the Cameca ims-6f ion microprobe at CIW. Four of these samples have previously been measured by manometry to determine absolute H2O concentrations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-10-14
    Description: The chlorine isotope composition of Earth’s interior can place strong constraints on deep-Earth cycling of halogens and the origin of mantle chemical heterogeneity. However, all mantle-derived volcanic samples studied for Cl isotopes thus far originate from submarine volcanic systems, where the influence of seawater-derived Cl is pervasive. Here, we present Cl isotope data from subglacial volcanic glasses from Iceland, where the mid-ocean ridge system emerges above sea level and is free of seawater influence. The Iceland data display significant variability in δ37Cl values, from −1.8‰ to +1.4‰, and are devoid of regional controls. The absence of correlations between Cl and O isotope ratios and the lack of evidence for seawater-derived enrichments in Cl indicate that the variation in δ37Cl values in Icelandic basalts can be solely attributed to mantle heterogeneity. Indeed, positive correlations are evident between δ37Cl values and incompatible trace element ratios (e.g., La/Y), and long-lived radiogenic Pb isotope ratios. The data are consistent with the incorporation of altered lithosphere, including the uppermost sedimentary package, subducted into the Iceland mantle plume source, resulting in notable halogen enrichments in Icelandic basalts relative to lavas from adjacent mid-ocean ridges.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2022-01-31
    Description: The formation and segregation of oceanic and continental crust from the mantle, and its return to the mantle via subduction and/or delamination, leads to the development of distinct geochemical reservoirs in the terrestrial mantle. Fundamental questions remain regarding the location, nature, and residence time of these reservoirs, as well as the respective roles of oceanic and continental crust in the development of the mantle's geochemical endmembers. The Lu-Hf and Sm-Nd isotope systems behave similarly in magmatic systems and together form the terrestrial mantle Hf-Nd isotopic array. Here we combine a geodynamic model of mantle convection with isotope and trace element (TE) geochemistry to investigate the evolution of the Hf-Nd mantle array. This study examines the sensitivity to: TE partition coefficients used in the formation of oceanic crust; density contrasts between subducting oceanic crust and the mantle; and the formation and recycling of continental crust. We show that the fractionation between the parent (Lu and Sm) and daughter (Hf and Nd) species needs to be higher than is indicated by partition coefficients determined from the present-day melting environment. This is consistent with the suggestion of deeper mantle melting earlier in Earth history and an increased role for residual garnet. Subduction and accumulation of dense oceanic crust produces a large mass of incompatible TE enriched material in the deep mantle. This deep mantle enrichment appears to play a more significant role than the extraction and recycling of continental crust in developing the Hf and Nd isotope and TE compositions of the mid-ocean ridge mantle source. The corollary of this result is that the formation of the continental crust plays a secondary role, contrary to the currently accepted paradigm. Nevertheless, the inclusion of continental crust formation and recycling produces a broader model mantle array, which better reproduces the spread in the natural data set. This model also produces the Hf and Nd isotope and TE compositions of the upper mantle and continental crust, as well as deep mantle compositions similar to those of plume-fed ocean island basalts. Our model is consistent with continental growth models based on the Lu-Hf isotopic composition of zircon, which suggest that 50–70% of the present-day mass of the continental crust is produced prior to 3 Ga, and that the recycling of continental crust becomes more prevalent after this time.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...