ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
Collection
Years
  • 1
    Publication Date: 2019-07-13
    Description: The reactivity of the fullerenes is primarily a function of their strain, as measured by the pyramidalization angle or curvature of the conjugated carbon atoms. The development of faceting in the structure of large icosahedral fullerenes leads to a minimum in the value of the maximum fullerene pyramidalization angle that lies in the vicinity of C-240. On this basis it is argued that C-240 will be the most chemically inert fullerene. This observation explains the production of [10,10] single-walled nanotubes because a C-240 hemisphere is required for the nucleation of such tubes.
    Keywords: Solid-State Physics
    Type: NASA/CR-97-207143 , NAS 1.26:207143 , Chemical Physics Letters (ISSN 0009-2614); 272; 38-42
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: As part of a continuing materials development activity, low color space environmentally stable polymeric materials that possess sufficient electrical conductivity for electrostatic charge dissipation (ESD) have been investigated. One method of incorporating sufficient electrical conductivity for ESD without detrimental effects on other polymer properties of interest (i.e., optical and thermo-optical) is through the incorporation of single-walled carbon nanotubes (SWNTs). However, SWNTs are difficult to fully disperse in the polymer matrix. One means of improving dispersion is by shortening and functionalizing SWNTs. While this improves dispersion, other properties (i.e., electrical) of the SWNTs can be affected which can in turn alter the final nanocomposite properties. Additionally, functionalization of the polymer matrix can also influence nanocomposite properties obtained from shortened, functionalized SWNTs. The preparation and characterization of nanocomposites fabricated from a polyimide, both functionalized and unfunctionalized, and shortened, functionalized SWNTs will be presented.
    Keywords: Composite Materials
    Type: SAMPE 2006 Symposium and Exhibition (51st ISSE); Apr 30, 2006 - May 04, 2006; Long Beach, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Low color, flexible, space-durable polyimide films with inherent and robust electrical conductivity to dissipate electrostatic charge (ESC) have been under investigation as part of a materials development activity for future NASA space missions. The use of single-walled carbon nanotubes (SWCNTs) is one means to achieving this goal. Even though the concentration of SWCNTs needed to achieve ESC dissipation is typically low, it is dependent upon purity, size, dispersion, and functionalization. In this study, SWCNTs prepared by the electric arc discharge method were used to synthesize nanocomposites using the LaRC(TradeMark) CP2 backbone as the matrix. Pristine and functionalized SWCNTs were mixed with an alkoxysilane terminated amide acid of LaRC(TradeMark) CP2 and the soluble imide form of the polymer and the resultant nanocomposites evaluated for mechanical, thermal, and electrical properties. Due to the preparative conditions for the pristine and functionalized SWCNTs, the average aspect ratio for both was comparable. This permitted the assessment of SWCNT functionalization with respect to various interactions (e.g. van der Waals, hydrogen bonding, covalent bond formation, etc.) with the matrix and the macroscopic effects upon nanocomposite properties. The results of this study are described herein.
    Keywords: Composite Materials
    Type: High Performance Polymers; 20; 6; 567-587
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...