ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-08
    Keywords: Communications and Radar
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-19
    Description: NASA s Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.
    Keywords: Space Sciences (General)
    Type: JSC-CN-19066 , Lunar Exploration Analysis Group Annual Meeting; Nov 16, 2009 - Nov 19, 2009; Houston, TX; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: Howardites are polymict breccias that, together with eucrites and diogenites (HED), likely originate from the vestan surface (regolith/ megaregolith), and display a heterogeneous distribution of eucritic and diogenitic material. Melt clasts are also present alongside other regolithic features within howardites, and are noteworthy for their compositional variability and appearance. Melt clasts formed by impact events provide a snapshot of the timings and conditions of surface gardening and bombardment on the vestan surface. By dating such clasts, we aim to better constrain the timings of impact events on Vesta, and to establish whether the impact flux in the asteroid belt was similar to that on the Moon. As the Moon is used as the basis for characterising impact models of the inner solar system, it is necessary to verify that apparent wide-scale events are seen in other planetary bodies. In particular, the observed clustering of Apollo melt clast ages between 3.8-4.0 Ga has led to two hypotheses: 1) The Moon was subjected to a sudden event - 'Lunar Cataclysm' or period of 'Late Heavy Bombardment' (LHB), 2) The age cluster represents the end of an epoch of declining bombardment or 'Heavy Bombardment. No consensus has emerged regarding one or other hypothesis. We are testing these hypotheses by seeking evidence for such events in materials other than those derived from the Moon.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-35237 , Lunar and Planetary Science Conference; Mar 21, 2016 - Mar 25, 2016; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: While large-footprint X-ray fluorescence (XRF) instruments are reliable providers of elemental information about geologic samples, handheld XRF instruments are currently being developed that enable the collection of geochemical data in the field in short time periods (approx.60 seconds) [1]. These detectors are lightweight (1.3kg) and can provide elemental abundances of major rock forming elements heavier than Na. While handheld XRF detectors were originally developed for use in mining, we are working with commercially available instruments as prototypes to explore how portable XRF technology may enable planetary field science [2,3,4]. If an astronaut or robotic explorer visited another planetary surface, the ability to obtain and evaluate geochemical data in real-time would be invaluable, especially in the high-grading of samples to determine which should be returned to Earth. We present our results on the evaluation of handheld XRF technology as a geochemical tool in the context of planetary exploration.
    Keywords: Geophysics
    Type: JSC-CN-25664 , 43rd Lunar aud Plauetary Science Conference; Mar 19, 2012 - Mar 23, 2012; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-19
    Description: Howardite meteorites are polymict breccias composed mainly of eucritic and diogenitic material that likely originate from the surface of the Asteroid 4 Vesta. They can be separated into two subtypes: Regolithic, which represent the lithified remains of the active vestan regolith; Fragmental, which represent simpler polymict breccias. Amongst the regolithic features observed in the former, melt clasts are particularly striking for their appearance and compositional variability. They range from glassy spherules to finely crystalline (i.e., devitrified) clasts, and clasts containing only relict mineral grains to those containing only phenocrysts. Glasses can be separated into compositional sub-types including those with low FeO/MgO ratios (less than 5) -low alkali glasses, K-rich (K2O greater than 0.2 wt.%), Na-rich (Na2O greater than 0.6 wt.%) and CaO-rich, and those with high FeO/MgO ratios (greater than 10). There is also a distinction to be made between primary volcanic melt clasts and those produced by impacts. While suggested that a lack of chemical homogeneity among their studied melt clasts ruled out a primary volcanic origin, the low siderophile element contents observed in such clasts suggest less compositional influence from impactors than commonly assumed. Studying the chronology of the impact melt clasts in howardites can help us to better determine the timing of impact events on Vesta and the asteroid belt. In this research, we are launching an investigation into the petrology, composition (major/trace element and noble gas) and chronology of melt clasts in howardites. We have selected a set of howardites known to contain large quantities of melt clasts, and have begun the petrological and compositional studies of these materials. Once the melt clasts have been fully classified, we aim to perform chronological studies of individual clasts using both the Ar-40/Ar-39 and Pb-Pb chronometers, as well as determine the noble gas components present. Of particular note, the study will take advantage of the laser ablation techniques associated with the noble gas facilities at ASU, which will allow high-resolution, in-situ analysis of individual clasts. The broader aim of this work is to ascertain whether the impact flux in the region of the asteroid belt was similar to that on the Moon. Our understanding of impact events in the inner Solar System relies heavily on our analyses of lunar meteorites and returned samples, and there is currently some debate regarding whether there was a "Lunar Cataclysm" event around approx. 3.9 Ga, or the end of an epoch of "Late Heavy Bombardment" (LHB) at this time. New and more comprehensive constraints on howardite melt clast ages may help determine whether the asteroid belt experienced such a cataclysm or LHB.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-32743 , Lunar and Planetary Science Conference; Mar 16, 2015 - Mar 20, 2015; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-19
    Description: While traditional geologic mapping includes the examination of structural relationships between rock units in the field, more advanced technology now enables us to simultaneously collect and combine analytical datasets with field observations. Information about tectonomagmatic processes can be gleaned from these combined data products. Historically, construction of multi-layered field maps that include sample data has been accomplished serially (first map and collect samples, analyze samples, combine data, and finally, readjust maps and conclusions about geologic history based on combined data sets). New instruments that can be used in the field, such as a handheld xray fluorescence (XRF) unit, are now available. Targeted use of such instruments enables geologists to collect preliminary geochemical data while in the field so that they can optimize scientific data return from each field traverse. Our study tests the application of this technology and projects the benefits gained by real-time geochemical data in the field. The integrated data set produces a richer geologic map and facilitates a stronger contextual picture for field geologists when collecting field observations and samples for future laboratory work. Real-time geochemical data on samples also provide valuable insight regarding sampling decisions by the field geologist
    Keywords: Geophysics
    Type: JSC-CN-27228 , American Geophysical Union Fall Meeting; Dec 03, 2012 - Dec 07, 2012; San Francisco, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: Samples collected during the Apollo lunar surface missions were sampled and returned to Earth by astronauts with varying degrees of geological experience. The technology used in these EVAs, or extravehicular activities, included nothing more advanced than traditional terrestrial field instruments: rock hammer, scoop, claw tool, and sample bags. 40 years after Apollo, technology is being developed that will allow for a high-resolution geochemical map to be created in the field real-time. Handheld x-ray fluorescence (XRF) technology is one such technology. We use handheld XRF to enable a broad in-situ characterization of a geologic site of interest based on fairly rapid techniques that can be implemented by either an astronaut or a robotic explorer. The handheld XRF instrument we used for this study was the Innov-X Systems Delta XRF spectrometer.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-22753 , 42nd Lunar and Planetary Science Conference; Mar 07, 2011 - Mar 11, 2011; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA's Desert Research and Technology Studies (D-RATS) field test is a demonstration that combines operations development, technology advances and science in analog planetary surface conditions. The focus is testing preliminary operational concepts for extravehicular activity (EVA) systems by providing hands-on experience with simulated surface operations and EVA hardware and procedures. The DRATS activities also develop technical skills and experience for the engineers, scientists, technicians, and astronauts responsible for realizing the goals of the Lunar Surface Systems Program. The 2009 test is the twelfth for the D-RATS team.
    Keywords: Lunar and Planetary Science and Exploration
    Type: JSC-CN-19594 , Lunar and Planetary Science Conference; Mar 01, 2010 - Mar 05, 2010; The Woodlands, TX; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  [Talk] In: 46. Lunar and Planetary Science Conference (2015), 16.-20.03.2015, The Woodlands, Texas, USA ; p. 2690 .
    Publication Date: 2015-11-16
    Type: Conference or Workshop Item , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-08-05
    Description: A precise age for the collision of the Kohistan-Ladakh block with Eurasia along the Shyok suture zone (SSZ) is one key to understanding the accretionary history of Tibet and the tectonics of Eurasia during the India-Eurasia collision. Knowing the age of the SSZ also allows the suture to be used as a piercing line for calculating total offset along the Karakoram Fault, which effectively represents the SE border of the Tibetan Plateau and has played a major role in plateau evolution. We present a combined structural, geochemical, and geochronologic study of the SSZ as it is exposed in the Nubra region of India to test two competing hypotheses: that the SSZ is of Late Cretaceous or, alternatively, of Eocene age. Coarse-continental strata of the Saltoro Molasse, mapped in this area, contain detrital zircon populations suggestive of derivation from Eurasia despite the fact that the molasse itself is deposited unconformably onto Kohistan-Ladakh rocks, indicating that the molasse is postcollisional. The youngest population of detrital zircons in these rocks (approximately 92 Ma) and a U/Pb zircon date for a dike that cuts basal molasse outcrops (approximately 85 Ma) imply that deposition of the succession began in the Late Cretaceous. This establishes a minimum age for the SSZ and rules out the possibility of an Eocene collision between Kohistan-Ladakh and Eurasia. Our results support correlation of the SSZ with the Bangong suture zone in Tibet, which implies a total offset across the Karakoram Fault of approximately 130–190 km.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...