ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: The fixed-lag Kalman smoother (FLKS) has been proposed as a framework to construct data assimilation procedures capable of producing high-quality climate research datasets. Fixed-lag Kalman smoother-based systems, referred to as retrospective data assimilation systems, are an extension to three-dimensional filtering procedures with the added capability of incorporating observations not only in the past and present time of the estimate, but also at future times. A variety of simplifications are necessary to render retrospective assimilation procedures practical. In this article, we present an FLKS-based retrospective data assimilation system implementation for the Goddard Earth Observing System (GOES) Data Assimilation System (DAS). The practicality of this implementation comes from the practicality of its underlying (filter) analysis system, i.e., the physical-space statistical analysis system (PSAS). The behavior of two schemes is studied here. The first retrospective analysis (RA) scheme is designed simply to update the regular PSAS analyses with observations available at times ahead of the regular analysis times. Although our GEOS DAS implementation is general, results are only presented for when observations 6-hours ahead of the analysis time are used to update the PSAS analyses and thereby to calculate the so-called lag-1 retrospective analyses. Consistency tests for this RA scheme show that the lag-1 retrospective analyses indeed have better 6-hour predictive skills than the predictions from the regular analyses. This motivates the introduction of the second retrospective analysis scheme which, at each analysis time, uses the 6-hour retrospective analysis to replace the first-guess normally used in the PSAS analysis, and therefore allows the calculation of a revised (filter) PSAS analysis. Since in this scheme the lag-1 retrospective analyses influence the filter results, this procedure is referred to as the retrospective-based iterative analysis (RIA) scheme. Results from the RIA scheme indicate its potential for improving the overall quality of the assimilation.
    Keywords: Meteorology and Climatology
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-12
    Description: The Global Modeling and Assimilation Office (GMAO) at the NASA Goddard Space Flight Center has developed software and products for conducting observing system simulation experiments (OSSEs) for weather analysis applications. Such applications include estimations of potential effects of new observing instruments or data assimilation techniques on improving weather analysis and forecasts. The GMAO software creates simulated observations from nature run (NR) data sets and adds simulated errors to those observations. The algorithms employed are much more sophisticated, adding a much greater degree of realism, compared with OSSE systems currently available elsewhere. The algorithms employed, software designs, and validation procedures are described in this document. Instructions for using the software are also provided.
    Keywords: Meteorology and Climatology; Geosciences (General)
    Type: NASA/TM-2017-194606/Vol48 , GSFC-E-DAA-TN47869
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-18
    Description: The NASA/Goddard Earth Observing System 3 (GEOS-3) has recently been replaced operationally by GEOS-4. One of the major components of the new system is the finite-volume general circulation model (GCM) of Lin and Rood. Updating the GEOS-3 retrospective data assimilation system of Zhu et al. to GEOS-4 requires two main steps: (i) developing the adjoint of the finite-volume GCM; and (ii) developing the adjoint of the procedures interfacing the GCM with the Physical-space Statistical Analysis System. These required adjoints are being developed automatically through the use of the Transformation of Algorithms in Fortran compiler of Giering and Kaminski. In this presentation we discuss the current status of development and plans for the near future as well as show preliminary results.
    Keywords: Earth Resources and Remote Sensing
    Type: EGS-AGU-EUG Joint Assembly; Apr 06, 2003 - Apr 11, 2003; Nice; France
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: This article focuses on construction, directly in physical space, of three-dimensional covariance functions parametrized by a tunable length field, and on an application of this theory to reproduce the Quasi-Biennial Oscillation (QBO) in the Goddard Earth Observing System, Version 4 (GEOS-4) data assimilation system. These Covariance models are referred to as multi-level or nonseparable, to associate them with the application where a multi-level covariance with a large troposphere to stratosphere length field gradient is used to reproduce the QBO from sparse radiosonde observations in the tropical lower stratosphere. The multi-level covariance functions extend well-known single level covariance functions depending only on a length scale. Generalizations of the first- and third-order autoregressive covariances in three dimensions are given, providing multi-level covariances with zero and three derivatives at zero separation, respectively. Multi-level piecewise rational covariances with two continuous derivatives at zero separation are also provided. Multi-level powerlaw covariances are constructed with continuous derivatives of all orders. Additional multi-level covariance functions are constructed using the Schur product of single and multi-level covariance functions. A multi-level powerlaw covariance used to reproduce the QBO in GEOS-4 is described along with details of the assimilation experiments. The new covariance model is shown to represent the vertical wind shear associated with the QBO much more effectively than in the baseline GEOS-4 system.
    Keywords: Earth Resources and Remote Sensing
    Type: Quarterly Journal of the Royal Meteorological Society
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Description: Enhancements are now being made to the Gridpoint Statistical Interpolation (GSI) data assimilation system to expand its capabilities. This effort opens the way for broadening the scope of GSI's applications by using some standard object-oriented features in Fortran, and represents a starting point for the so-called GSI refactoring, as a part of the Joint Effort for Data-assimilationI ntegration (JEDI) project of JCSDA.
    Keywords: Computer Programming and Software
    Type: GSFC-E-DAA-TN45269
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...