ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-03-09
    Description: An interlaboratory study of Mg/Ca and Sr/Ca ratios in three commercially available carbonate reference materials (BAM RS3, CMSI 1767, and ECRM 752-1) was performed with the participation of 25 laboratories that determine foraminiferal Mg/Ca ratios worldwide. These reference materials containing Mg/Ca in the range of foraminiferal calcite (0.8 mmol/mol to 6 mmol/mol) were circulated with a dissolution protocol for analysis. Participants were asked to make replicate dissolutions of the powdered samples and to analyze them using the instruments and calibration standards routinely used in their laboratories. Statistical analysis was performed in accordance with the International Standardization Organization standard 5725, which is based on the analysis of variance (ANOVA) technique. Repeatability (RSDr%), an indicator of intralaboratory precision, for Mg/Ca determinations in solutions after centrifuging increased with decreasing Mg/Ca, ranging from 0.78% at Mg/Ca = 5.56 mmol/mol to 1.15% at Mg/Ca = 0.79 mmol/mol. Reproducibility (RSDR%), an indicator of the interlaboratory method precision, for Mg/Ca determinations in centrifuged solutions was noticeably worse than repeatability, ranging from 4.5% at Mg/Ca = 5.56 mmol/mol to 8.7% at Mg/Ca = 0.79 mmol/mol. Results of this study show that interlaboratory variability is dominated by inconsistencies among instrument calibrations and highlight the need to improve interlaboratory compatibility. Additionally, the study confirmed the suitability of these solid standards as reference materials for foraminiferal Mg/Ca (and Sr/Ca) determinations, provided that appropriate procedures are adopted to minimize and to monitor possible contamination from silicate mineral phases.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2022-03-21
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-03-03
    Description: Extreme weather conditions in the face of due to climate change often disproportionately affects the weakest members of society. Agricultural insurance programs that are specifically designed specifically for smallholders in developing countries are valuable tools that can help farmers to cope with the resulting risks. A broad range of methods including household surveys, experimental games, and agent-based models have been used to assess and improve the effectiveness of such climate insurance products. In addition Furthermore, process-based crop models have been used to derive suitable insurance indices. However, climate change raises specific socioeconomic andas well as environmental challenges that need to be considered when designing insurance schemes. We argue that, in light of these pressing challenges, some of the methodological approaches currently applied to study climate insurance reach their limits when applied independently. This has fundamental implications. On the one hand, not all undesired side effects of insurance can be detected and, on the other hand, insurance indices cannot be derived sufficiently well. We therefore advocate a sound combination of different methods, especially by linking empirical analyses and modelling, and underline the resulting potential with the help of stylized examples. Our study highlights how methodological synergies can make climate insurance products more effective in supporting the most vulnerable households, especially under changing climatic conditions.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-03-07
    Description: Sustainability challenges in socio-environmental systems (SES) are inherently multiscale, with global-level changes emerging from socio-environmental processes that operate across different spatial, temporal, and organisational scales. Models of SES therefore need to incorporate multiple scales, which requires sound methodologies for transferring information between scales. Due to the increasing global connectivity of SES, upscaling – increasing the extent or decreasing the resolution of a modelling study – is becoming progressively more important. However, upscaling in SES models has received less attention than in other fields (e.g., ecology or hydrology) and therefore remains a pressing challenge. To advance the understanding of upscaling in SES, we take three steps. First, we review existing upscaling approaches in SES as well as other disciplines. Second, we identify four main challenges that are particularly relevant to upscaling in SES: 1) heterogeneity, 2) interactions, 3) learning and adaptation, and 4) emergent phenomena. Third, we present an approach that facilitates the transfer of existing upscaling methods to SES, using two good practice examples from ecology. To describe and compare these methods, we propose a scheme of five general upscaling strategies. This scheme builds upon and unifies existing schemes and provides a standardised way to classify and represent existing as well as new upscaling methods. We demonstrate how the scheme can help to transparently present upscaling methods and uncover scaling assumptions, as well as to identify limits for the transfer of upscaling methods. We finish by pointing out research avenues on upscaling in SES to address the identified upscaling challenges.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-07-21
    Description: Accurate dating of marine sediments is essential to reconstruct past changes in oceanography and climate. Benthic foraminiferal oxygen isotope series from such sediments record long‐term changes in global ice volume and deep‐water temperature. They are commonly used in the Plio‐Pleistocene to correlate deep ocean records and to construct age models. However, continental margin settings often display much higher sedimentation rates due to variations in regional depositional setting and local input of sediment. Here, it is necessary to create a regional multi‐site framework to allow precise dating of strata. We create such a high‐resolution regional framework to determine the ages of events for the Northwest Shelf (NWS) of Australia, which was cored by International Ocean Discovery Program (IODP) Expedition 356. We employ benthic foraminiferal oxygen and carbon isotopes to construct an astronomically‐tuned age model for IODP Site U1463 (5.16–1.69 Ma). The age model is applied to the IODP Site U1463 downhole‐logging natural gamma radiation (NGR) depth‐series, which was then correlated to NGR depth‐series of several IODP sites and industry wells in the area. This approach allows assigning ages to regional seismic reflectors and the timing of key climate‐related siliciclastic phases in a predominantly carbonate‐rich sequence, like the late Miocene‐Pliocene Bare Formation. This age model is also used to chronologically calibrate planktonic foraminiferal biostratigraphic datums showing that the Indonesian Throughflow (ITF) had shoaled enough in the early Pliocene to act as biogeographical barrier between the Pacific and Indian Ocean.
    Description: Plain Language Summary: Determining the age of marine sediments is essential to reconstruct past changes in oceanography and climate. The oxygen isotopes of benthic foraminifera record long‐term changes in global ice volume and deep‐water temperature, and are commonly used to construct age models. However, continental margin settings often display much higher sedimentation rates due to regional input by rivers. Here, it is necessary to create a regional framework to allow precise dating of strata. We created such a framework for the Northwest Shelf (NWS) of Australia, which was cored by IODP Expedition 356. We used oxygen and carbon isotopes in benthic foraminifera to construct an astronomically‐tuned age model for IODP Site U1463. The natural gamma radiation (NGR) variations for IODP Site U1463 were then correlated to those of other IODP sites and industry wells in the area. The IODP Site U1463 age‐depth model provides a reference for other archives on the NWS allowing to assign ages to regional seismic reflectors and the timing of sediment input. This age model is also used to determine first and last occurrences of foraminiferal species showing that the Indonesian Throughflow (ITF) blocked the migration of foraminifera from the Pacific to the Indian Ocean after 5 Ma.
    Description: Key Points: Independent, orbitally tuned age model for IODP Site U1463 Correlation of natural gamma radiation and seismic profiling allow a consistent age model for the shelf of northwest Australia Independent age model allows updating planktonic foraminiferal biostratigraphy for the Plio‐Pleistocene
    Description: DAAD | German Academic Exchange Service
    Description: Deutsche Forschungsgemeinschaft
    Description: Australian IODP office and the ARC Basins Genesis Hub
    Keywords: 559 ; 563 ; benthic foraminiferal isotopes ; downhole wireline logging ; NW‐Australia ; planktonic foraminiferal biostratigraphy ; seismic network
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...