ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: About 30 to 50% of the fluvial P-input to the oceans derives from release of reactive-P from particles during their passage through estuaries. The input is matched by P-removal into three approximately equivalent sink: (1) burial in phosphorites on productive shelves; (2) burial with (org) in the deep-sea; and (3) burial with biogenic calcite in the deep-sea. The P/C burial ratio in these three phases is very different: P/C (org) approximately .004; P/C (CaCO3) approximately .001; and P/C (PHOS) approximately .03. The removal mechanisms are all coupled to primary production in the surface ocean, but the details of the feedback mechanisms controlling the steady-state nutrient and carbon budgets in the sea are doscured by lack of knowledge of how the P/C ratios in the sinks adjust, and how shifts in oceanic nutrients affect oceanic ecology and the relative fraction of biogenic CaCO3 and (org) production.
    Keywords: OCEANOGRAPHY
    Type: JPL The interaction of Global Biochemical Cycles; p 141-178
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: Ocean surface water [CO2(aq)] variations based on glacial/interglacial changes in sediment delta 13Corg are shown to compare favorably with reconstructions based on ice core [CO2]. In particular, an approximate 80 microatmospheres increase in atmospheric pCO2 during the last glacial-interglacial transition is calculated to correspond to a 3-4 micromolar increase in ocean surface water [CO2(aq)] at atmospheric equilibrium. A widespread marine delta 13Corg decrease of 1-2% accompanied this event and was not preceded by an equivalent isotopic change in surface water total dissolved inorganic carbon. These observations support the hypothesis that [CO2(aq)] influences photosynthetic isotope fractionation between marine inorganic and organic carbon pools, and therefore that plankton/sediment delta 13Corg may serve as a proxy for surface water [CO2(aq)].
    Keywords: Exobiology
    Type: Paleoceanography (ISSN 0883-8305); 6; 3; 335-47
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-07-19
    Description: Dissolved silica (Si) and inorganic germanium (Ge) concentrations were measured in hydrothermal fluids from black smoker vents on the East Pacific Rise (21°N EPR) and the Southern Juan de Fuca Ridge (45°N SJdFR: North and South Cleft Sites, Axial Volcano). These typically display end-member concentrations ranging from 16 to 23 mM (Si) and 150 to 280 nM (Ge), and end-member Ge/Si ratios clustering between 8 and 14 × 10−6, more than 10-fold greater than the ratio entering the ocean via rivers (0.54 × 10−6) and being recycled in seawater (0.7 × 10−6). ‘Excess’ concentrations of dissolved Si and Ge above oceanic background are observed in mid-water hydrothermal plumes over mid-ocean ridge (MOR) spreading centers on the Southern EPR (SEPR) (10°–20°S) and the SJdFR. The largest Si and Ge concentration anomalies occur over the North Cleft Segment of the SJdFR. These are a factor of three greater than anomalies over the SEPR (10°–20°S). Excess Ge correlates with excess3He in plumes at a Ge/3He molar ratio of about 1 × 104, approximately the same ratio as in black smokers. These observations, combined with low abundances of Ge in Fesingle bondMn-rich metalliferous sediments, suggest that Ge (and Si) behave conservatively in mid-ocean ridge hydrothermal plumes. A simple ocean Si and Ge balance, constrained by the global river silica flux and Ge/Si ratios in hydrothermal vents, rivers and biogenic silica, suggests that the global hydrothermal silica flux is about 1–4 × 1011 mole yr−1, much lower than that estimated from3He. Either (1) 70–80% of the Ge flux to the ocean is removed in as-yet undiscovered sinks (not opal), or (2) only 10% of the mantle to ocean3He and heat fluxes is associated with MOR hydrothermal convection through the 350°C isotherm (90% is off-ridge), or (3) the oceanic Ge/Si,3He/ (and87Sr86Sr) balances today are far from steady-state.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    AGU (American Geophysical Union)
    In:  Paleoceanography, 8 (1). pp. 7-21.
    Publication Date: 2019-02-22
    Description: Measurements of opal preservation in deep sea sediment cores have been presented in three ways: the opal concentration as a fraction of total dry weight (%opaltot), the opal concentration normalized to calcite‐free dry weight (%opalcalcite‐free), and me opal accumulation rate (opal MAR). It is tempting to interpret changes in these indices as indicators of rates of biological production in past oceans. Based on theoretical constraints, we argue that in typical tropical and subtropical sediments, both %Opalcalcite‐free and opal MAR reflect a significant artifact of dilution by other phases. Thus the band of high %Opalcalcite‐free in the equatorial Pacific appears to be caused in large part by the high %Calcite in that region, rather than by high opal productivity. The best candidate for a reliable paleoproductivity proxy appears to be %Opaltot. Unfortunately, present‐day %Opaltot data from tropical and subtropical regions show little or no systematic trend with the rain rate of opal. Pore water silica concentration data reveal that the apparent pore water opal solubility is not constant but correlates regionally with the rain rate of opal to the seafloor. A model that treats opal as a single homogeneous phase with a single well‐defined solubility product predicts a strong dependence of opal concentration on rain rate (in stark contrast to the data), and a constant asymptotic pore water Si. Two models representing opal as multiple heterogeneous phases with different solubilities are able to reproduce the observed asymptotic pore water Si/rain rate relationship, but not the lack of rain rate trend in the opal concentration data. Only by assuming a systematic trend in the quality of opal (i.e., the solubility) as a function of opal production, can we reproduce the observed pattern of opal preservation. The implication of this study is that changes in opal preservation in the geologic record cannot simply be interpreted in terms of changes in surface ocean productivity until our understanding of opal diagenesis can be improved.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-12-16
    Description: Two centric marine diatom species, Thalassiosira oceanica and Thalassiosira antarctica, were grown in batch cultures to determine the incorporation of germanium (Ge) and silicon (Si) into siliceous shells (opal). The results were modeled as Ge/Si “isotope” fractionation. During exponential growth, diatoms take up and incorporate Ge/Si from solution without major discrimination against Ge. During stationary phase growth near silica limitation, the Antarctic species (T. antarctica) discriminates slightly against Ge but integrated (Ge/Si)opal produced over the latter portion of the growth cycle is indistinguishable from the initial solution ratio. These results confirm experiments using radioactive 68Ge that showed absence of fractionation during diatom silica uptake (Azam and Volcani, 1981), in contrast to two‐box ocean models that invoke 50% Ge discrimination by diatoms to explain the observed “excess” surface ocean germanium concentration (Murnane and Stallard, 1988; Froelich et al., 1989) and late Pleistocene ocean sediment (Ge/Si)opal records (Mortlock et al., 1991). Runs of a 10‐box ocean Ge and Si model (PANDORA) with 50% discrimination reproduce the excess surface ocean Ge but introduces curvature into the deep ocean Ge versus Si relationship that is not observed in the oceans. Thus 50% fractionation is not supported by either cultures or models. If diatoms do not fractionate Ge/Si, then late Pleistocene (Ge/Si)opal variations in piston cores are caused not by changes in local biosiliceous production and silica utilization (Mortlock et al, 1991) but rather by whole ocean changes in (Ge/Si)seawater. The marine (Ge/Si)opal record of the last 450 kyr can be modeled as transient oceanic responses to instantaneous continental climate transitions consistent with the chemical weathering model of Murnane and Stallard (1990). Glacial periods are characterized by lower continental weathering intensity, lower (Ge/Si)riv, and two fold higher dissolved silica river fluxes. Marine (Ge/Si)opal records thus contain a history of ocean silica chemistry that reflect rapid global changes in continental weathering.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...