ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: Two hours after treatment with beta-bungarotoxin (0.34-0.4 microM), when there was complete neuromuscular block, the peak contracture response to 50 microM succinylcholine was significantly reduced by about 35% in the mouse phrenic nerve-diaphragm preparation. Additionally, significant phospholipase A2 activity was detected on primary cell cultures from skeletal muscle which were incubated for 2 hr with concentrations of beta-bungarotoxin greater than or equal to 0.1 microM. Thus, beta-bungarotoxin appears to have pharmacologically and biochemically detectable postsynaptic actions in mammalian muscle systems.
    Keywords: Life Sciences (General)
    Type: Toxicon : official journal of the International Society on Toxinology (ISSN 0041-0101); Volume 30; 3; 349-54
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-12-14
    Description: Flame propagation through non-uniformly premixed gases occurs in several common combustion situations. As summarized in a previous conference paper, non-uniform premixed gas combustion has received scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames. It is the goal of this research to further our knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread, in particular by focusing on the role that gravity plays. Gravity can affect flame propagation in at least three ways: through a hydrostatic pressure gradient, by altering the initial distribution of fuel vapor, and through buoyantly induced flows once ignition has occurred. An understanding of the phenomena involved is important to fire safety, especially aboard spacecraft since no microgravity data exist. The data obtained will also be useful to verify theoretical models of this problem, which are easier to implement if buoyancy is neglected.
    Keywords: Materials Processing
    Type: Fifth International Microgravity Combustion Workshop; 57-60
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2004-12-03
    Description: The principal goal of our recent research on flame spread across liquid pools is the detailed identification of the mechanisms that control the rate and nature of flame spread when the liquid pool is initially at an isothermal bulk temperature that is below the fuel's flash point temperature. In our project, we specialize the subject to highlight the roles of buoyancy-related processes regarding the mechanisms of flame spread, an area of research cited recently by Linan and Williams as one that needs further attention and which microgravity (micro-g) experiments could help to resolve. Toward resolving the effects of buoyancy on this flame spread problem, comparisons - between 1-g and micro-g experimental observations, and between model predictions and experimental data at each of these gravitational levels - are extensively utilized. The present experimental and computational foundation is presented to support identification of the mechanisms that control flame spread in the pulsating flame spread regime for which long-duration, micro-g flame spread experiments have been conducted aboard a sounding rocket.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 375-380; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-06-07
    Description: Flame propagation through non-uniformly premixed (or layered) gases has importance both in useful combustion systems and in unintentional fires. As summarized previously, non-uniform premixed gas combustion receives scant attention compared to the more usual limiting cases of diffusion or uniformly premixed flames, especially regarding the role gravity plays. This paper summarizes our progress on furthering the knowledge of layered combustion, in which a fuel concentration gradient exists normal to the direction of flame spread. We present experimental and numerical results for flame spread through propanol-air layers formed near the flash point temperature (25 C) or near the stoichiometric temperature (33 C). Both the model and experimental results show that the removal of gravity results in a faster spreading flame, by as much as 80% depending on conditions. This is exactly the opposite effect as that predicted by an earlier model reported. We also found that having a gallery lid results in faster flame spread, an effect more pronounced at normal gravity, demonstrating the importance of enclosure geometry. Also reported here is the beginning of our spectroscopic measurements of fuel vapor.
    Keywords: Inorganic, Organic and Physical Chemistry
    Type: Sixth International Microgravity Combustion Workshop; 321-324; NASA/CP-2001-210826
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: Recent theoretical investigations on graphite particle combustion have employed several levels of heterogeneous reaction models, ranging from global to elementary models, to describe the oxidation of carbon to gaseous products. Unlike the counterpart homogeneous reaction models, these heterogeneous reaction models are not well developed because of the difficulties associated with decoupling the physical characteristics of the solid (e.g. surface area taking part in combustion) from the chemical kinetic data. This is certainly true for porous graphite particle combustion, where heterogeneous and homogeneous reactions occur within the pores and play an important role in the overall oxidation process. As a result, there are considerable uncertainties of physical phenomena predicted using different heterogeneous kinetic models available in the literature. A good example, discussed later in this paper, is the predicted critical particle size below which the mass burning rate becomes exponentially small. The main goal of this study is to understand the basic mechanism controlling such rapid changes in burning rates, by developing a model where physical contributions are decoupled from chemical rate constants in a consistent manner. Another important goal of the proposed study is to develop a truly intrinsic, detailed heterogeneous reaction model for porous graphite combustion at high-temperatures, and to derive a systematically reduced heterogeneous reaction model in terms of the elementary reaction rate constants of the detailed model. The validation of chemical kinetic models describing the heterogeneous and homogeneous combustion in and around a spherically symmetric porous graphite particle can be considerably simplified by experimental measurements obtained under microgravity conditions. A vital component of this study is to conduct such supporting experiments on particle burning rate and surface temperature using NASA microgravity facilities, in close coordination with the theoretical effort. The basic understanding obtained and models developed as part of this project will be useful for optimal design of coal combustion devices. These models can also be extended to investigate the role of heterogeneous chemistry on pollutant formation pathways in combustion devices. The theoretical approach developed here, with pore diffusion effects decoupled from the chemical effects, can also be extended to understand the heterogeneous combustion of other porous fuels, for example, combustion of magnesium in a CO2 environment for propulsion in the Martian atmosphere.
    Keywords: Materials Processing
    Type: Fourth International Microgravity Combustion Workshop; 511-516; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: We have built an apparatus for measuring flame spread rates through non-homogeneous fuel-air mixtures as a function of layer thickness and concentration. The layer thickness is adjusted by controlling the diffusion time above a fuel-saturated porous media, while the concentration is controlled by the fuel temperature. Normal gravity tests with methanol have so far explored largely the effect of temperature, as well as the effects of various aspects of the apparatus. Good agreement with previous research has been obtained. We have also demonstrated the ability of a rainbow schlieren system to quantitatively measure fuel vapor concentrations in the static case.
    Keywords: Inorganic and Physical Chemistry
    Type: Fourth International Microgravity Combustion Workshop; 343-348; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Experimental and numerical studies were conducted for weakly-strained, laminar premixed flames. The dynamic response and stability of such flames was assessed for a large number of mixtures. A new technique is proposed for the direct experimental determination of laminar flame speeds at the limit of near-zero strain rate.
    Keywords: Materials Processing
    Type: Fourth International Microgravity Combustion Workshop; 349-354; NASA-CP-10194
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018-06-02
    Description: Poets and artists have long used fire as a metaphor for life. At the NASA Glenn Research Center, recent experiments in a subcritical Rayleigh number flow channel demonstrated that this analogy holds up surprisingly well when tools developed to characterize a biological population are applied to a class of fire that occurs in near-extinction, weakly convective environments (such as microgravity) or in vertically confined spaces (such as our apparatus). Under these conditions, the flame breaks into numerous 'flamelets" that form a Turing-type reaction-diffusion fingering pattern as they spread across the fuel. It is standard practice on U.S. spacecraft for the astronaut crew to turn off the ventilation to help extinguish a fire, both to eliminate the fresh oxygen supply and to reduce the distribution of the smoke. When crew members think that the fire is fully extinguished, they reactivate the ventilation system to clear the smoke. However, some flamelets can survive, and our experiments have demonstrated that flamelets quickly grow into a large fire when ventilation increases.
    Keywords: Propellants and Fuels
    Type: Research and Technology 2004; NASA/TM-2005-213419
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2018-06-05
    Description: The physics and behavior of a flame spreading across a flammable liquid is an active area of research at the NASA Glenn Research Center. Spills of fuels and other liquids often result in considerable fire hazards, and much remains unknown about the details of how a flame, once ignited, moves across a pool. The depth of the liquid or size of the spill, the temperature, and wind, if any, can all complicate the combustion processes. In addition, with the advent of the International Space Station there may be fire hazards associated with cleaning, laboratory, or other fluids in space, and it is essential to understand the role that gravity plays in such situations. The Spread Across Liquids (SAL) experiment is an experimental and computational effort dedicated to understanding the detailed mechanisms of flame spread across a flammable liquid initially below its flashpoint temperature. The experimental research is being carried out in-house by a team of researchers from Glenn, the National Center for Microgravity Combustion, and Zin Technologies, with computer modeling being provided via a grant with the University of California, Irvine. Glenn's Zero Gravity Facility is used to achieve short microgravity periods, and normal gravity testing is done in the Space Experiments Laboratory. To achieve longer periods of microgravity, the showcase SAL hardware flies aboard a sounding rocket launched from White Sands Missile Range, New Mexico, approximately once per year. In addition to extended microgravity, this carrier allows the use of detailed diagnostics that cannot be employed in a drop tower.
    Keywords: Space Processing
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-06-27
    Description: Apparent statistical correlation between Arctic heat budget and zonal circulation
    Keywords: METEOROLOGY
    Type: NASA-CR-81689 , NASR-21/07/ , RM-5234-NASA
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...