ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (3)
  • 1
    Publication Date: 2022-01-31
    Description: We quantify seasonal prediction skill of tropical winter rainfall in 14 climate forecast systems. High levels of seasonal prediction skill exist for year‐to‐year rainfall variability in all tropical ocean basins. The tropical East Pacific is the most skilful region, with very high correlation scores, and the tropical West Pacific is also highly skilful. Predictions of tropical Atlantic and Indian Ocean rainfall show lower but statistically significant scores. We compare prediction skill (measured against observed variability) with model predictability (using single forecasts as surrogate observations). Model predictability matches prediction skill in some regions but it is generally greater, especially over the Indian Ocean. We also find significant inter‐basin connections in both observed and predicted rainfall. Teleconnections between basins due to El Niño–Southern Oscillation (ENSO) appear to be reproduced in multi‐model predictions and are responsible for much of the prediction skill. They also explain the relative magnitude of inter‐annual variability, the relative magnitude of predictable rainfall signals and the ranking of prediction skill across different basins. These seasonal tropical rainfall predictions exhibit a severe wet bias, often in excess of 20% of mean rainfall. However, we find little direct relationship between bias and prediction skill. Our results suggest that future prediction systems would be best improved through better model representation of inter‐basin rainfall connections as these are strongly related to prediction skill, particularly in the Indian and West Pacific regions. Finally, we show that predictions of tropical rainfall alone can generate highly skilful forecasts of the main modes of extratropical circulation via linear relationships that might provide a useful tool to interpret real‐time forecasts.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2023-02-08
    Description: Weather and climate variations on subseasonal to decadal time scales can have enormous social, economic, and environmental impacts, making skillful predictions on these time scales a valuable tool for decision-makers. As such, there is a growing interest in the scientific, operational, and applications communities in developing forecasts to improve our foreknowledge of extreme events. On subseasonal to seasonal (S2S) time scales, these include high-impact meteorological events such as tropical cyclones, extratropical storms, floods, droughts, and heat and cold waves. On seasonal to decadal (S2D) time scales, while the focus broadly remains similar (e.g., on precipitation, surface and upper-ocean temperatures, and their effects on the probabilities of high-impact meteorological events), understanding the roles of internal variability and externally forced variability such as anthropogenic warming in forecasts also becomes important. The S2S and S2D communities share common scientific and technical challenges. These include forecast initialization and ensemble generation; initialization shock and drift; understanding the onset of model systematic errors; bias correction, calibration, and forecast quality assessment; model resolution; atmosphere-ocean coupling; sources and expectations for predictability; and linking research, operational forecasting, and end-user needs. In September 2018 a coordinated pair of international conferences, framed by the above challenges, was organized jointly by the World Climate Research Programme (WCRP) and the World Weather Research Programme (WWRP). These conferences surveyed the state of S2S and S2D prediction, ongoing research, and future needs, providing an ideal basis for synthesizing current and emerging developments in these areas that promise to enhance future operational services. This article provides such a synthesis.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-03-29
    Description: Weather regime forecasts are a prominent use case of sub‐seasonal prediction in the midlatitudes. A systematic evaluation and understanding of year‐round sub‐seasonal regime forecast performance is still missing, however. Here we evaluate the representation of and forecast skill for seven year‐round Atlantic–European weather regimes in sub‐seasonal reforecasts from the European Centre for Medium‐Range Weather Forecasts. Forecast calibration improves regime frequency biases and forecast skill most strongly in summer, but scarcely in winter, due to considerable large‐scale flow biases in summer. The average regime skill horizon in winter is about 5 days longer than in summer and spring, and 3 days longer than in autumn. The Zonal Regime and Greenland Blocking tend to have the longest year‐round skill horizon, which is driven by their high persistence in winter. The year‐round skill is lowest for the European Blocking, which is common for all seasons but most pronounced in winter and spring. For the related, more northern Scandinavian Blocking, the skill is similarly low in winter and spring but higher in summer and autumn. We further show that the winter average regime skill horizon tends to be enhanced following a strong stratospheric polar vortex (SPV), but reduced following a weak SPV. Likewise, the year‐round average regime skill horizon tends to be enhanced following phases 4 and 7 of the Madden–Julian Oscillation (MJO) but reduced following phase 2, driven by winter but also autumn and spring. Our study thus reveals promising potential for year‐round sub‐seasonal regime predictions. Further model improvements can be achieved by reduction of the considerable large‐scale flow biases in summer, better understanding and modeling of blocking in the European region, and better exploitation of the potential predictability provided by weak SPV states and specific MJO phases in winter and the transition seasons.
    Description: The overall sub‐seasonal forecast performance (biases and skill) for predicting seven year‐round Atlantic–European weather regimes is highest in winter and lowest in summer. The year‐round skill horizon is shortest for the European Blocking and longest for the Zonal Regime and Greenland Blocking (see figure). Furthermore, the winter skill horizon tends to be enhanced following a strong stratospheric polar vortex but reduced following a weak one. Madden–Julian Oscillation phases 4 and 7 tend to increase and phase 2 to decrease the year‐round skill horizon.
    Description: Helmholtz‐Gemeinschaft http://dx.doi.org/10.13039/501100001656
    Keywords: ddc:551.6
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...