ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Keywords
Years
  • 1
    Publication Date: 2019-07-13
    Description: The XXL survey currently covers two 25 deg2 patches with XMM observations of approximately 10 ks. We summarize the scientific results associated with the first release of the XXL dataset, which occurred in mid-2016.We review several arguments for increasing the survey depth to 40 ks during the next decade of XMM operations. X-ray(zeta less than 2) cluster, (zeta less than 4) active galactic nuclei (AGN), and cosmic background survey science will then benefit from an extraordinary data reservoir. This, combined with deep multi-lambda observations, will lead to solid standalone cosmological constraints and provide a wealth of information on the formation and evolution of AGN, clusters, and the X-ray background. In particular, it will offer a unique opportunity to pinpoint the zeta greater than1 cluster density. It will eventually constitute a reference study and an ideal calibration field for the upcoming eROSITA and Euclid missions.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN47027 , Astronomical Notes (ISSN 0004-6337) (e-ISSN 1521-3994); 338; 3-Feb; 334–341
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-13
    Description: The quest for the cosmological parameters that describe our universe continues to motivate the scientific community to undertake very large survey initiatives across the electromagnetic spectrum. Over the past two decades, the Chandra and XMM-Newton observatories have supported numerous studies of X-ray-selected clusters of galaxies, active galactic nuclei (AGNs), and the X-ray background. The present paper is the first in a series reporting results of the XXL-XMM survey; it comes at a time when the Planck mission results are being finalized. Aims. We present the XXL Survey, the largest XMM programme totaling some 6.9 Ms to date and involving an international consortium of roughly 100 members. The XXL Survey covers two extragalactic areas of 25 deg2 each at a point-source sensitivity of approx. 5 x 10(exp 15) erg/s/sq cm in the [0.5-2] keV band (completeness limit). The surveys main goals are to provide constraints on the dark energy equation of state from the space-time-distribution of clusters of galaxies and to serve as a pathfinder for future, wide-area X-ray missions. We review science objectives, including cluster studies, AGN evolution, and large-scale structure, that are being conducted with the support of approximately 30 follow-up programs. Methods. We describe the 542 XMM observations along with the associated multi- and numerical simulation programmes. We give a detailed account of the X-ray processing steps and describe innovative tools being developed for the cosmological analysis. Results. The paper provides a thorough evaluation of the X-ray data, including quality controls, photon statistics, exposure and background maps, and sky coverage. Source catalogue construction and multi-associations are briefly described. This material will be the basis for the calculation of the cluster and AGN selection functions, critical elements of the cosmological and science analyses. Conclusions. The XXL multi- data set will have a unique lasting legacy value for cosmological and extragalactic studies and will serve asa calibration resource for future dark energy studies with clusters and other X-ray selected sources. With the present article, we release the XMM XXL photon and smoothed images along with the corresponding exposure maps.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN41085 , Astronomy & Astrophysics (ISSN 0004-6361) (e-ISSN 1432-0746); 592; A1
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...