ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (5)
  • 1
    Publication Date: 2021-08-11
    Description: Subsurface coherent eddies are well-known features of ocean circulation, but the sparsity of observations prevents an assessment of their importance for biogeochemistry. Here, we use a global eddying (0.1° ) ocean-biogeochemical model to carry out a census of subsurface coherent eddies originating from eastern boundary upwelling systems (EBUS), and quantify their biogeochemical effects as they propagate westward into the subtropical gyres. While most eddies exist for a few months, moving over distances of 100s of km, a small fraction (〈 5%) of long-lived eddies propagates over distances greater than 1000km, carrying the oxygen-poor and nutrient-rich signature of EBUS into the gyre interiors. In the Pacific, transport by subsurface coherent eddies accounts for roughly 10% of the offshore transport of oxygen and nutrients in pycnocline waters. This "leakage" of subsurface waters can be a significant fraction of the transport by nutrient-rich poleward undercurrents, and may contribute to the well-known reduction of productivity by eddies in EBUS. Furthermore, at the density layer of their cores, eddies decrease climatological oxygen locally by close to 10%, thereby expanding oxygen minimum zones. Finally, eddies represent low-oxygen extreme events in otherwise oxygenated waters, increasing the area of hypoxic waters by several percent and producing dramatic short-term changes that may play an important ecological role. Capturing these non-local effects in global climate models, which typically include non-eddying oceans, would require dedicated parameterizations.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Format: video
    Format: video
    Format: video
    Format: video
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-02-08
    Description: In ocean waters, anaerobic microbial respiration should be confined to the anoxic waters found in coastal regions and tropical oxygen minimum zones, where it is energetically favourable. However, recent molecular and geochemical evidence has pointed to a much broader distribution of denitrifying and sulfate-reducing microbes. Anaerobic metabolisms are thought to thrive in microenvironments that develop inside sinking organic aggregates, but the global distribution and geochemical significance of these microenvironments is poorly understood. Here, we develop a new size-resolved particle model to predict anaerobic respiration from aggregate properties and seawater chemistry. Constrained by observations of the size spectrum of sinking particles, the model predicts that denitrification and sulfate reduction can be sustained throughout vast, hypoxic expanses of the ocean, and could explain the trace metal enrichment observed in particles due to sulfide precipitation. Globally, the expansion of the anaerobic niche due to particle microenvironments doubles the rate of water column denitrification compared with estimates based on anoxic zones alone, and changes the sensitivity of the marine nitrogen cycle to deoxygenation in a warming climate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    facet.materialart.
    Unknown
    AMS (American Meteorological Society)
    In:  Journal of Climate, 29 (1). pp. 61-76.
    Publication Date: 2019-02-01
    Description: The transport of dissolved oxygen (O2) from the surface ocean into the interior is a critical process sustaining aerobic life in mesopelagic ecosystems, but its rates and sensitivity to climate variations are poorly understood. Using a circulation model constrained to historical variability by assimilation of observations, we show that the North Pacific thermocline effectively takes up O2 primarily by expanding the area through which O2-rich mixed layer water is detrained into the thermocline. The outcrop area during the critical winter season varies in concert with the Pacific Decadal Oscillation (PDO). When the central North Pacific Ocean is in a cold phase, the winter outcrop window for the Central Mode Water class (CMW; a neutral density range of γ = 25.6 - 26.6) expands southward allowing more O2-rich surface water to enter the ocean’s interior. An increase in volume flux of water to the CMW density class is partly compensated by a reduced supply to the shallower densities of Subtropical Mode Water (γ = 24.0 - 25.5). The thermocline has become better oxygenated since the 1980s due partly to strong O2 uptake. Positive O2 anomalies appear first near the outcrop and subsequently downstream in the subtropical gyre. In contrast to the O2 variations within the ventilated thermocline, observed O2 in Intermediate Water (density range of γ = 26.7 – 27.2) shows a declining trend over the past half-century, a trend not explained by the open ocean water mass formation rate.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-23
    Description: The nitrogen cycle is fundamental to Earth's biogeochemistry. Yet major uncertainties of quantification remain, particularly regarding the global oceanic nitrogen fixation rate. Hydrogen is produced during nitrogen fixation and will become supersaturated in surface waters if there is net release from diazotrophs. Ocean surveys of hydrogen supersaturation thus have the potential to illustrate the spatial and temporal distribution of nitrogen fixation, and to guide the far more onerous but quantitative methods for measuring it. Here we present the first transect of high resolution measurements of hydrogen supersaturations in surface waters along a meridional 10,000 km cruise track through the Atlantic. We compare measured saturations with published measurements of nitrogen fixation rates and also with model-derived values. If the primary source of excess hydrogen is nitrogen fixation and has a hydrogen release ratio similar to Trichodesmium, our hydrogen measurements would point to similar rates of fixation in the North and South Atlantic, roughly consistent with modelled fixation rates but not with measured rates, which are lower in the south. Possible explanations would include any substantial nitrogen fixation by newly discovered diazotrophs, particularly any having a hydrogen release ratio similar to or exceeding that of Trichodesmium; under-sampling of nitrogen fixation south of the equator related to excessive focus on Trichodesmium; and methodological shortcomings of nitrogen fixation techniques that cause a bias towards colonial diazotrophs relative to unicellular forms. Alternatively our data are affected by an unknown hydrogen source that is greater in the southern half of the cruise track than the northern.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    American Chemistry Society
    In:  Chemical Reviews, 107 (2). pp. 577-589.
    Publication Date: 2020-07-27
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...