ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
Collection
Publisher
Years
  • 1
    Publication Date: 2018-06-18
    Description: The control exerted by some invertebrates on the calcium carbonate polymorph produced is intriguing but not understood. Mytilus edulis shells, with the abrupt polymorph switch within their valves from an outer calcite to inner aragonite layer, are excellent examples of this phenomenon. Detailed crystallography of intact valves using Electron Backscatter Diffraction (EBSD) is considered in the context of quantitative chemical analyses by electron microprobe. Apart from the outer 40 μm, individual crystals that comprise the calcite layer of M. edulis differ from each other in terms of misorientation by less than 10°. Similar uniformity occurs in the inner aragonite layer with notable 'mineral bridging' between tablets of aragonite nacre. The first-formed aragonite laminae are submicron thickness and the subsequent laminae of uniform 1 μm thickness.Variations in chemical composition through the two valves correspond in part with the distribution of the two polymorphs. Magnesium is present in notably higher concentrations within calcite than aragonite. However, the Mg2+ concentration in calcite is not uniform and increases with growth before decreasing at the polymorph switch. Sodium concentrations decrease steadily through the calcite layer. The aragonite layer is compositionally more uniform. Sulphur is not a good proxy for organic content in this system because it does not reflect the higher organic content of the aragonite. Sector zoning is not responsible for the element distribution seen here while differences in crystal size and association with organic components remain as possible explanations.
    Type: Article , PeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-02-01
    Description: Shells of brachiopods are excellent archives for environmental reconstructions in the recent and distant past as their microstructure and geochemistry respond to climate and environmental forcings. We studied the morphology and size of the basic structural unit, the secondary layer fibre, of the shells of several extant brachiopod taxa to derive a model correlating microstructural patterns to environmental conditions. Twenty-one adult specimens of six recent brachiopod species adapted to different environmental conditions, from Antarctica, to New Zealand, to the Mediterranean Sea, were chosen for microstructural analysis using SEM, TEM and EBSD. We conclude that: 1) there is no significant difference in the shape and size of the fibres between ventral and dorsal valves, 2) there is an ontogenetic trend in the shape and size of the fibres, as they become larger, wider, and flatter with increasing age. This indicates that the fibrous layer produced in the later stages of growth, which is recommended by the literature to be the best material for geochemical analyses, has a different morphostructure and probably a lower organic content than that produced earlier in life. In two species of the same genus living in seawater with different temperature and carbonate saturation state, a relationship emerged between the microstructure and environmental conditions. Fibres of the polar Liothyrella uva tend to be smaller, rounder and less convex than those of the temperate Liothyrella neozelanica, suggesting a relationship between microstructural size, shell organic matter content, ambient seawater temperature and calcite saturation state.
    Type: Article , PeerReviewed , info:eu-repo/semantics/article
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...