ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (40)
  • 1
    Publication Date: 2019-05-30
    Description: We present ALMA 0.87 mm continuum, HCO+ J = 43 emission line, and CO J = 32 emission line data of the disk of material around the young, Sun-like star PDS 70. These data reveal the existence of a possible two-component transitional disk system with a radial dust gap of 0.42 arcsec 0.05 arcsec, an azimuthal gap in the HCO+ J = 43 moment zero map, as well as two bridge-like features in the gas data. Interestingly these features in the gas disk have no analog in the dust disk making them of particular interest. We modeled the dust disk using the Monte Carlo radiative transfer code HOCHUNK3D using a two-disk component. We nd that there is a radial gap that extends from 15 to 60 au in all grain sizes, which differs from previous work.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64788 , Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 858; 2; 112
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: We conducted high-contrast polarimetry observations of T Tau in the H-band, using the High Contrast Instrument for the Subaru Next Generation Adaptive Optics instrument mounted on the Subaru Telescope, revealing structures as near as 0farcs1 from the stars T Tau N and T Tau S. The whole T Tau system is found to be surrounded by nebula-like envelopes, and several outflow-related structures are detected in these envelopes. We analyzed the detailed polarization patterns of the circumstellar structures near each component of this triple young star system and determined constraints on the circumstellar disks and outflow structures. We suggest that the nearly face-on circumstellar disk of T Tau N is no larger than 0".8, or 117 au, in the northwest, based on the existence of a hole in this direction, and no larger than 0".27, or 40 au, in the south. A new structure, "N5," extends to about 0."42, or 59 au, southwest of the star, and is believed to be part of the disk. We suggest that T Tau S is surrounded by a highly inclined circumbinary disk with a radius of about 0."3, or 44 au, with a position angle of about 30, that is misaligned with the orbit of the T Tau S binary. After analyzing the positions and polarization vector patterns of the outflow-related structures, we suggest that T Tau S should trigger the well-known EW outflow, and is also likely to be responsible for a southwest precessing outflow "coil" and a possible south outflow.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64810 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 861; 2; 133
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-27
    Description: Pairs of azimuthal intensity decrements at near-symmetric locations have been seen in a number of protoplanetary disks. They are most commonly interpreted as the two shadows cast by a highly misaligned inner disk. Direct evidence of such an inner disk, however, remains largely illusive, except in rare cases. In 2012, a pair of such shadows were discovered in scattered-light observations of the near face-on disk around 2MASS J16042165- 2130284, a transitional object with a cavity 60 au in radius. The star itself is a dipper, with quasi-periodic dimming events on its light curve, commonly hypothesized as caused by extinctions by transiting dusty structures in the inner disk. Here, we report the detection of a gas disk inside the cavity using Atacama Large Millimeter/ submillimeter Array (ALMA) observations with 0".2 angular resolution. A twisted butterfly pattern is found in the moment 1 map of the CO (32) emission line toward the center, which is the key signature of a high misalignment between the inner and outer disks. In addition, the counterparts of the shadows are seen in both dust continuum emission and gas emission maps, consistent with these regions being cooler than their surroundings. Our ndings strongly support the hypothesized misaligned inner disk origin of the shadows in the J1604-2130 disk. Finally, the inclination of the inner disk would be close to 45 in contrast with 45; it is possible that its internal asymmetric structures cause the variations on the light curve of the host star.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64797 , The Astrophysical Journal (ISSN 2041-8205) (e-ISSN 2041-8213); 868; 1; L3
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-06-27
    Description: We present SCExAO/CHARIS high-contrast imaging/JHK integral eld spectroscopy of And b, a directly imaged low-mass companion orbiting a nearby B9V star. We detect And b at a high signal-to-noise ratio and extract high-precision spectrophotometry using a new forward-modeling algorithm for (A-)LOCI complementary to KLIP-FM developed by Pueyo et al. And bs spectrum best resembles that of a low-gravity L0L1 dwarf (L0L1). Its spectrum and luminosity are very well matched by 2MASS J0141-4633 and several other 12.515 M(sub J) free-oating members of the 40 Myr old TucHor Association, consistent with a system age derived from recent interferometric results for the primary, a companion mass at/near the deuterium-burning limit (13(sup +12, sub -2) M(sub J)), and a companion-to-primary mass ratio characteristic of other directly imaged planets (q 0.005(sup +0.005, sub -0.001)). We did not unambiguously identify additional, more closely orbiting companions brighter and more massive than And b down to 0".3 (15 au). SCExAO/CHARIS and complementary Keck/NIRC2 astrometric points reveal clockwise orbital motion. Modeling points toward a likely eccentric orbit: a subset of acceptable orbits include those that are aligned with the stars rotation axis. However, And bs semimajor axis is plausibly larger than 55 au and in a region where disk instability could form massive companions. Deeper high-contrast imaging of And and low-resolution spectroscopy from extreme adaptive optics systems such as SCExAO/CHARIS and higher-resolution spectroscopy from Keck/OSIRIS or, later, IRIS on the Thirty Meter Telescope could help to clarify And bs chemistry and whether its spectrum provides an insight into its formation environment.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64795 , The Astrophysical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 156; 6; 291
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-27
    Description: We present H- and K s-bands observations of the LkH 330 disk with a multi-band detection of the large gap and spiral-like structures. The morphology of the outer disk (r ~ 0."3) at PA = 045 and PA = 180290 is likely density wave-induced spirals, and comparison between our observational results and simulations suggests a planet formation. We have also investigated the azimuthal profiles at the ring and the outer-disk regions as well as radial profiles in the directions of the spiral-like structures and semimajor axis. Azimuthal analysis shows a large variety in wavelength and implies that the disk has non-axisymmetric dust distributions. The radial profiles in the major-axis direction (PA = 271) suggest that the outer region (r 0."25) may be influenced by shadows of the inner region of the disk. The spiral-like directions (PA = 10 and 230) show different radial profiles, which suggests that the surfaces of the spiral-like structures are highly flared and/or have different dust properties. Finally, a color map of the disk shows a lack of an outer eastern region in the H-band disk, which may hint at the presence of an inner object that casts a directional shadow onto the disk.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64807 , The Astrophysical Journal (ISSN 0004-6256) (e-ISSN 1538-3881); 156; 2; 63
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-27
    Description: We present new, near-infrared (1.12.4 m) high-contrast imaging of the bright debris disk surrounding HIP 79977 with the Subaru Coronagraphic Extreme Adaptive Optics system (SCExAO) coupled with the CHARIS integral eld spectrograph. SCExAO/CHARIS resolves the disk down to smaller angular separations of (0".11; r 14 au) and at a higher signicance than previously achieved at the same wavelengths. The disk exhibits a marginally signicant eastwest brightness asymmetry in H band that requires conrmation. Geometrical modeling suggests a nearly edge-on disk viewed at a position angle of 114.6 east of north. The disk is best-t by scattered-light models assuming strongly forward-scattering grains (g 0.50.65) conned to a torus with a peak density at r0 5375 au. We nd that a shallow outer density power law of (sub out) = 1 to 3 and are index of = 1 are preferred. Other disk parameters (e.g., inner density power law and vertical scale height) are more poorly constrained. The disk has a slightly blue intrinsic color and its prole is broadly consistent with predictions from birth ring models applied to other debris disks. While HIP 79977s disk appears to be more strongly forward- scattering than most resolved disks surrounding 530 Myr old stars, this difference may be due to observational biases favoring forward-scattering models for inclined disks versus lower inclination, ostensibly neutral-scattering disks like HR 4796As. Deeper, higher signal-to-noise SCExAO/CHARIS data can better constrain the disks dust composition.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN64796 , The Astrophysical Journal (ISSN 0004-637X) (e-ISSN 1538-4357); 156; 6; 279
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-19
    Description: We present L' band (3.8 Micron) MMT/Clio high-contrast imaging data for the nearby star GJ 758, which was recently reported by Thalmann et al. (2009) to have one -- possibly two-- faint comoving companions (GJ 7588 and "C", respectively). GJ 758B is detected in two distinct datasets. Additionally, we report a \textit(possible) detection of the object identified by Thalmann et al as "GJ 758C" in our more sensitive dataset, though it is likely a residual speckle. However, if it is the same object as that reported by Thalmann et al. it cannot be a companion in a bound orbit. GJ 758B has a H-L'color redder than nearly all known L--T8 dwarfs. Based on comparisons with the COND evolutionary models, GJ 758B has Te approx. 560 K (+150 K, -90 K) and a mass ranging from approx. 10-20 Mj if it is approx. 1 Gyr old to approx. 25-40 Mj if it is 8.7 Gyr old. GJ 758B is likely in a highly eccentric orbit, e approx. 0.73 (+0.12,-0.21), with a semimajor axis of approx. 44 AU (+32 AU, -14 AU). Though GJ 758B is sometimes discussed within the context of exoplanet direct imaging, its mass is likely greater than the deuterium-burning limit and its formation may resemble that of binary stars rather than that of jovian-mass planets.
    Keywords: Astronomy
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: We present the first near infrared (NIR) spatially resolved images of the circumstellar transitional disk around SR21. These images were obtained with the Subaru HiCIAO camera, adaptive optics, and the polarized differential imaging technique. We resolve the disk in scattered light at H-band for stellocentric 0.1 〈 or approx. r 〈 or approx. 0.6 (12 〈 or approx. r 〈 or approx. 75AU). We compare our results with previously published spatially resolved 880 micron continuum Submillimeter Array images that show an inner r 〈 or approx. 36AU cavity in SR21. Radiative transfer models reveal that the large disk depletion factor invoked to explain SR21's sub-mm cavity cannot be "universal" for all grain sizes. Even significantly more moderate depletions (delta = 0.1, 0.01 relative to an undepleted disk) than those that reproduce the sub-mm cavity (delta approx. 10(exp 6) are inconsistent with our H-band images when they are assumed to carry over to small grains, suggesting that surface grains scattering in the NIR either survive or are generated by whatever mechanism is clearing the disk midplane. In fact, the radial polarized intensity profile of our H-band observations is smooth and steeply inwardly-increasing (r(sup 3), with no evidence of a break at the 36AU sub-mm cavity wall. We hypothesize that this profile is dominated by an optically thin disk envelope or atmosphere component.We also discuss the compatibility of our data with the previously postulated existence of a sub-stellar companion to SR21 at r approx. 10-20AU, and find that we can neither exclude nor verify this scenario. This study demonstrates the power of multiwavelength imaging of transitional disks to inform modeling efforts, including the debate over precisely what physical mechanism is responsible for clearing these disks of their large midplane grains.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN17002 , Astrophysical Journal; 767; 1; 10
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: We compared the number of faint stars detected in deep survey fields with the current stellar distribution model of the Galaxy and found that the detected number in the H band is significantly smaller than the predicted number. This indicates that M-dwarfs, the major component, are fewer in the halo and the thick disk. We used archived data of several surveys in both the north and south field of GOODS (Great Observatories Origins Deep Survey), MODS in GOODS-N, and ERS and CANDELS in GOODS-S. The number density of M-dwarfs in the halo has to be 20+/-13% relative to that in the solar vicinity, in order for the detected number of stars fainter than 20.5 mag in the H band to match with the predicted value from the model. In the thick disk, the number density of M-dwarfs must be reduced (52+/-13%) or the scale height must be decreased ( approx. 600 pc). Alternatively, overall fractions of the halo and thick disks can be significantly reduced to achieve the same effect, because our sample mainly consists of faint M-dwarfs. Our results imply that the M-dwarf population in regions distant from the Galactic plane is significantly smaller than previously thought. We then discussed the implications this has on the suitability of the model predictions for the prediction of non-companion faint stars in direct imaging extrasolar planet surveys by using the best-fit number densities.
    Keywords: Astronomy; Astrophysics
    Type: GSFC-E-DAA-TN32916 , Astrophysics Journal (e-ISSN 2053-051X); 67; 1
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-12
    Description: We present near-infrared coronagraphic imaging polarimetry of RY Tau. The scattered light in the circumstellar environment was imaged at H-band at a high resolution (approx. 0.05) for the first time, using Subaru-HiCIAO. The observed polarized intensity (PI) distribution shows a butterfly-like distribution of bright emission with an angular scale similar to the disk observed at millimeter wavelengths. This distribution is offset toward the blueshifted jet, indicating the presence of a geometrically thick disk or a remnant envelope, and therefore the earliest stage of the Class II evolutionary phase. We perform comparisons between the observed PI distribution and disk models with: (1) full radiative transfer code, using the spectral energy distribution (SED) to constrain the disk parameters; and (2) monochromatic simulations of scattered light which explore a wide range of parameters space to constrain the disk and dust parameters. We show that these models cannot consistently explain the observed PI distribution, SED, and the viewing angle inferred by millimeter interferometry. We suggest that the scattered light in the near-infrared is associated with an optically thin and geometrically thick layer above the disk surface, with the surface responsible for the infrared SED. Half of the scattered light and thermal radiation in this layer illuminates the disk surface, and this process may significantly affect the thermal structure of the disk.
    Keywords: Astrophysics
    Type: GSFC-E-DAA-TN9906
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...