ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (2)
  • 1
    Publication Date: 2019-05-18
    Description: Cloud droplet number concentration (Nd) is an important parameter of liquid clouds and is crucial to understanding aerosol-cloud interactions. It couples boundary layer aerosol composition, size and concentration with cloud reflectivity. It affects cloud evolution, precipitation, radiative forcing, global climate and, through observation, can be used to partially monitor the first indirect effect. With its unique combination of multi-wavelength, multi-angle, total and polarized reflectance measurements, the Research Scanning Polarimeter (RSP) retrieves Nd with relatively few assumptions. The approach involves measuring cloud optical thickness, mean droplet extinction cross-section and cloud physical thickness. Polarimetric observations are capable of measuring the effective variance, or width, of the droplet size distribution. Estimating cloud geometrical thickness is also an important component of the polarimetric Nd retrieval, which is accomplished using polarimetric measurements in a water vapor absorption band to retrieve the amount of in-cloud water vapor and relating this to physical thickness. We highlight the unique abilities and quantify uncertainties of the polarimetric approach. We validate the approach using observational data from the North Atlantic and Marine Ecosystems Study (NAAMES). NAAMES targets specific phases in the seasonal phytoplankton lifecycle and ocean-atmosphere linkages. This study provides an excellent opportunity for the RSP to evaluate its approach of sensing Nd over a range of concentrations and cloud types with in situ measurements from a Cloud Droplet Probe (CDP). The RSP and CDP, along with an array of other instruments, are flown on the NASA C-130 aircraft, which flies in situ and remote sensing legs in sequence. Cloud base heights retrieved by the RSP compare well with those derived in situ (R=0.83) and by a ceilometer aboard the R.V. Atlantis (R=0.79). Comparing geometric mean values from 12 science flights throughout the NAAMES-1 and NAAMES-2 campaigns, we find a strong correlation between Nd retrieved by the RSP and CDP (R=0.96). A linear least squares fit has a slope of 0.92 and an intercept of 0.3 cm3. Uncertainty in this comparison can be attributed to cloud 3D effects, nonlinear liquid water profiles, multilayered clouds, measurement uncertainty, variation in spatial and temporal sampling, and assumptions used within the method. Radiometric uncertainties of the RSP measurements lead to biases on derived optical thickness and cloud physical thickness, but these biases largely cancel out when deriving Nd for most conditions and geometries. We find that a polarimetric approach to sensing Nd is viable and the RSP is capable of accurately retrieving Nd for a variety of cloud types and meteorological conditions.
    Keywords: Earth Resources and Remote Sensing
    Type: GSFC-E-DAA-TN68261 , Remote Sensing of Environment (ISSN 0034-4257) (e-ISSN 1879-0704); 228; 227-240
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-15
    Description: We present groundbased, advected aircraft engine emissions from flights taking off at Los Angeles International Airport. 275 discrete engine takeoff plumes were observed on 18 and 25 May 2014 at a distance of 400 m downwind of the runway. CO2 measurements are used to convert the aerosol data into plumeaverage emissions indices that are suitable for modelling aircraft emissions. Total and nonvolatile particle number EIs are of order 10161017 kg1 and 10141016 kg1, respectively. Blackcarbonequivalent particle mass EIs vary between 175941 mg kg1 (except for the GE GEnx engines at 46 mg kg1). Aircraft tail numbers recorded for each takeoff event are used to incorporate aircraft and enginespecific parameters into the data set. Data acquisition and processing follow standard methods for quality assurance. A unique aspect of the data set is the mapping of aerosol concentration time series to integrated plume EIs, aircraft and engine specifications, and manufacturerreported engine emissions certifications. The integrated data enable future studies seeking to understand and model aircraft emissions and their impact on air quality.
    Keywords: Environment Pollution; Air Transportation and Safety
    Type: NF1676L-28754 , Scientific Data (e-ISSN 2052-4463); 4; 170198
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...