ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • Other Sources  (4)
Collection
Years
  • 1
    Publication Date: 2020-02-06
    Description: The Mw 8.8 megathrust earthquake that occurred on 27 February 2010 offshore the Maule region of central Chile triggered a destructive tsunami. Whether the earthquake rupture extended to the shallow part of the plate boundary near the trench remains controversial. The up-dip limit of rupture during large subduction zone earthquakes has important implications for tsunami generation and for the rheological behavior of the sedimentary prism in accretionary margins. However, in general, the slip models derived from tsunami wave modeling and seismological data are poorly constrained by direct seafloor geodetic observations. We difference swath bathymetric data acquired across the trench in 2008, 2011 and 2012 and find ∼3-5 m of uplift of the seafloor landward of the deformation front, at the eastern edge of the trench. Modeling suggests this is compatible with slip extending seaward, at least, to within ∼6 km of the deformation front. After the Mw 9.0 Tohoku-oki earthquake, this result for the Maule earthquake represents only the second time that repeated bathymetric data has been used to detect the deformation following megathrust earthquakes, providing methodological guidelines for this relatively inexpensive way of obtaining seafloor geodetic data across subduction zone.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  [Poster] In: 81. Jahrestagung der Deutschen Geophysikalischen Gesellschaft (DGG), 01.03.-05.03.2021, Kiel (online) .
    Publication Date: 2021-07-12
    Description: On 1 April 2014, the Mw 8.1 Iquique earthquake broke the plate-boundary along the North Chilean margin in the region between 19.5°S and 21°S. During this event, seismic rupture concentrated under the marine forearc with an updip limit at a plate-boundary depth of 17 km under the middle continental slope. In late 2016, wide-aperture seismic reflection and refraction data were acquired aboard the R/V Marcus G. Langsethoffshore Northern Chile as part of the “Pisagua/Iquique Crustal Tomography to Understand the Region of the Earthquake Source” (PICTURES) project. Utilizing multiple suppression techniques and ray-based tomographic inversion, we have achieved enhanced pre-stack depth migrated images to a depth of 40 km. Seismic lines MC23 and MC25, located in the southern part of the 2014 rupture area, display a pronounced plate boundary reflection that can be tracked to a depth of ~16 km. In contrast, on line MC04, located north of the 2014 rupture area, a plate boundary reflection is clearly visible to ~40 km depth. We consider that changes in fluid pressure cause the observed spatial variations in the downdip extent of the reflective plate boundary and thus may exert an influence on seismic rupture. However, the processes that control the spatial variations in fluid pressure over short distances remain enigmatic. Temperature controlled dehydration processes within the shallow subduction zone are expected to change only gradually along the margin and may therefore not explain short wavelength changes in the downdip extent of high reflectivity between line MC04 in the north and the other lines farther south. We notice, however, that the vertical displacement induced by bending related normal faults in the oceanic plate is significantly smaller along line MC04 compared to lines MC23 and MC25. This may lead to a delayed vertical flow of pore-fluids from the oceanic basement towards the plate boundary along line MC04. In contrast to lines MC23 and MC25, where fluids are expelled from the oceanic basement at relatively shallow depth along the plate boundary (i.e. under the outermost wedge), they are subducted to greater depths at the location of line MC04.
    Type: Conference or Workshop Item , NonPeerReviewed
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-01-31
    Description: We study the structure and tectonics of the collision zone between the Nazca Ridge (NR) and the Peruvian margin constrained by seismic, gravimetric, bathymetric, and natural seismological data. The NR was formed in an on-ridge setting, and it is characterized by a smooth and broad shallow seafloor (swell) with an estimated buoyancy flux of ~7 Mg/s. The seismic results show that the NR hosts an oceanic lower crust 10–14 km thick with velocities of 7.2–7.5 km/s suggesting intrusion of magmatic material from the hot spot plume to the oceanic plate. Our results show evidence for subduction erosion in the frontal part of the margin likely enhanced by the collision of the NR. The ridge-trench collision zone correlates with the presence of a prominent normal scarp, a narrow continental slope, and (uplifted) shelf. In contrast, adjacent of the collision zone, the slope does not present a topographic scarp and the continental slope and shelf become wider and deeper. Geophysical and geodetic evidence indicate that the collision zone is characterized by low seismic coupling at the plate interface. This is consistent with vigorous subduction erosion enhanced by the subducting NR causing abrasion and increase of fluid pore pressure at the interplate contact. Furthermore, the NR has behaved as a barrier for rupture propagation of megathrust earthquakes (e.g., 1746 Mw 8.6 and 1942 Mw 8.1 events). In contrast, for moderate earthquakes (e.g., 1996 Mw 7.7 and 2011 Mw 6.9 events), the NR has behaved as a seismic asperity nucleating at depths 〉20 km.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2024-02-14
    Description: The Nazca Ridge (NR) was formed near the interaction of a hotspot mantle plume and an active spreading center. We use active-source wide-angle seismic data to obtain 2-D Vp and Vs tomographic models, and hence the Poisson's ratio (ν) structure beneath the NR. Results show a ∼2 km thick seismic layer 2A with ν values of 0.25–0.32 in the uppermost crust interpreted as pillow basalts with a low degree of fracturing and/or hydrothermal alteration. The 2A/B boundary layer presents ν values of 0.27–0.29 consistent with pillow basalts/sheeted dykes units. A ∼3 km layer 2B overlies a ∼10 km layer 3 with ν values of 0.24–0.3 at the 2/3 boundary layer. The lowermost layer 3 presents ν values of 0.28 ± 0.02 suggesting an increase in Mg content (≥10% wt). The NR crust (∼15 km thick) requires an increment of the asthenospheric mantle potential temperature in ∼100°C formed by passive adiabatic decompression melting.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...